scholarly journals Edge modes of gravity. Part III. Corner simplicity constraints

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Laurent Freidel ◽  
Marc Geiller ◽  
Daniele Pranzetti

Abstract In the tetrad formulation of gravity, the so-called simplicity constraints play a central role. They appear in the Hamiltonian analysis of the theory, and in the Lagrangian path integral when constructing the gravity partition function from topological BF theory. We develop here a systematic analysis of the corner symplectic structure encoding the symmetry algebra of gravity, and perform a thorough analysis of the simplicity constraints. Starting from a precursor phase space with Poincaré and Heisenberg symmetry, we obtain the corner phase space of BF theory by imposing kinematical constraints. This amounts to fixing the Heisenberg frame with a choice of position and spin operators. The simplicity constraints then further reduce the Poincaré symmetry of the BF phase space to a Lorentz subalgebra. This picture provides a particle-like description of (quantum) geometry: the internal normal plays the role of the four-momentum, the Barbero-Immirzi parameter that of the mass, the flux that of a relativistic position, and the frame that of a spin harmonic oscillator. Moreover, we show that the corner area element corresponds to the Poincaré spin Casimir. We achieve this central result by properly splitting, in the continuum, the corner simplicity constraints into first and second class parts. We construct the complete set of Dirac observables, which includes the generators of the local $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) $$ sl 2 ℂ subalgebra of Poincaré, and the components of the tangential corner metric satisfying an $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{R}}\right) $$ sl 2 ℝ algebra. We then present a preliminary analysis of the covariant and continuous irreducible representations of the infinite-dimensional corner algebra. Moreover, as an alternative path to quantization, we also introduce a regularization of the corner algebra and interpret this discrete setting in terms of an extended notion of twisted geometries.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Laurent Freidel ◽  
Marc Geiller ◽  
Daniele Pranzetti

Abstract In this second paper of the series we continue to spell out a new program for quantum gravity, grounded in the notion of corner symmetry algebra and its representations. Here we focus on tetrad gravity and its corner symplectic potential. We start by performing a detailed decomposition of the various geometrical quantities appearing in BF theory and tetrad gravity. This provides a new decomposition of the symplectic potential of BF theory and the simplicity constraints. We then show that the dynamical variables of the tetrad gravity corner phase space are the internal normal to the spacetime foliation, which is conjugated to the boost generator, and the corner coframe field. This allows us to derive several key results. First, we construct the corner Lorentz charges. In addition to sphere diffeomorphisms, common to all formulations of gravity, these charges add a local $$ \mathfrak{sl} $$ sl (2, ℂ) component to the corner symmetry algebra of tetrad gravity. Second, we also reveal that the corner metric satisfies a local $$ \mathfrak{sl} $$ sl (2, ℝ) algebra, whose Casimir corresponds to the corner area element. Due to the space-like nature of the corner metric, this Casimir belongs to the unitary discrete series, and its spectrum is therefore quantized. This result, which reconciles discreteness of the area spectrum with Lorentz invariance, is proven in the continuum and without resorting to a bulk connection. Third, we show that the corner phase space explains why the simplicity constraints become non-commutative on the corner. This fact requires a reconciliation between the bulk and corner symplectic structures, already in the classical continuum theory. Understanding this leads inevitably to the introduction of edge modes.


Author(s):  
S. ALBEVERIO ◽  
G. GUATTERI ◽  
S. MAZZUCCHI

The Belavkin equation, describing the continuous measurement of the momentum of a quantum particle, is studied. The existence and uniqueness of its solution is proved via analytic tools. A stochastic characteristics method is applied. A rigorous representation of the solution by means of an infinite dimensional oscillatory integral (Feynman path integral) defined on the phase space is also given.


2021 ◽  
Vol 118 (47) ◽  
pp. e2107668118
Author(s):  
Salvatore Calabrese ◽  
Arjun Chakrawal ◽  
Stefano Manzoni ◽  
Philippe Van Cappellen

Microbial growth is a clear example of organization and structure arising in nonequilibrium conditions. Due to the complexity of the microbial metabolic network, elucidating the fundamental principles governing microbial growth remains a challenge. Here, we present a systematic analysis of microbial growth thermodynamics, leveraging an extensive dataset on energy-limited monoculture growth. A consistent thermodynamic framework based on reaction stoichiometry allows us to quantify how much of the available energy microbes can efficiently convert into new biomass while dissipating the remaining energy into the environment and producing entropy. We show that dissipation mechanisms can be linked to the electron donor uptake rate, a fact leading to the central result that the thermodynamic efficiency is related to the electron donor uptake rate by the scaling law η∝μED−1/2 and to the growth yield by η∝Y4/5. These findings allow us to rederive the Pirt equation from a thermodynamic perspective, providing a means to compute its coefficients, as well as a deeper understanding of the relationship between growth rate and yield. Our results provide rather general insights into the relation between mass and energy conversion in microbial growth with potentially wide application, especially in ecology and biotechnology.


1994 ◽  
Vol 08 (11n12) ◽  
pp. 1563-1576 ◽  
Author(s):  
S.S. MIZRAHI ◽  
M.H.Y. MOUSSA ◽  
B. BASEIA

We consider the most general Time-Dependent (TD) quadratic Hamiltonian written in terms of the bosonic operators a and a+, which may represent either a charged particle subjected to a harmonic motion, immersed in a TD uniform magnetic field, or a single mode photon field going through a squeezing medium. We solve the TD Schrödinger equation by a method that uses, sequentially, a TD unitary transformation and the diagonalization of a TD invariant, and we verify that the exact solution is a complete set of TD states. We also obtain the evolution operator which is essential to express operators in the Heisenberg picture. The variances of the quadratures are calculated and a phase space of parameters introduced, in which we identify squeezing regions. The results for some special cases are presented and as an illustrative example the parametric oscillator is revisited and the trajectories in phase space drawn.


2010 ◽  
Vol 25 (06) ◽  
pp. 1253-1266
Author(s):  
TAMAR FRIEDMANN

We construct a classical dynamical system whose phase space is a certain infinite-dimensional Grassmannian manifold, and propose that it is equivalent to the large N limit of two-dimensional QCD with an O (2N+1) gauge group. In this theory, we find that baryon number is a topological quantity that is conserved only modulo 2. We also relate this theory to the master field approach to matrix models.


The Hamiltonian description of massless spin zero- and one-fields in Minkowski space is first recast in a way that refers only to null infinity and fields thereon representing radiative modes. With this framework as a guide, the phase space of the radiative degrees of freedom of the gravitational field (in exact general relativity) is introduced. It has the structure of an infinite-dimensional affine manifold (modelled on a Fréchet space) and is equipped with a continuous, weakly non-degenerate symplectic tensor field. The action of the Bondi-Metzner-Sachs group on null infinity is shown to induce canonical transformations on this phase space. The corresponding Hamiltonians – i. e. generating functions – are computed and interpreted as fluxes of supermomentum and angular momentum carried away by gravitational waves. The discussion serves three purposes: it brings out, via symplectic methods, the universality of the interplay between symmetries and conserved quantities; it sheds new light on the issue of angular momentum of gravitational radiation; and, it suggests a new approach to the quantization of the ‘true’ degrees of freedom of the gravitational field.


1995 ◽  
Vol 10 (01) ◽  
pp. 65-88 ◽  
Author(s):  
M. REUTER

We investigate spinor fields on phase spaces. Under local frame rotations they transform according to the (infinite-dimensional, unitary) metaplectic representation of Sp(2N), which plays a role analogous to the Lorentz group. We introduce a one-dimensional nonlinear sigma model whose target space is the phase space under consideration. The global anomalies of this model are analyzed, and it is shown that its fermionic partition function is anomalous exactly if the underlying phase space is not a spin manifold, i.e. if metaplectic spinor fields cannot be introduced consistently. The sigma model is constructed by giving a path integral representation to the Lie transport of spinors along the Hamiltonian flow.


2016 ◽  
Vol 82 (3) ◽  
Author(s):  
J. W. Burby

Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model’s initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, ‘renormalized’ variational approach to drift kinetic theory that manifestly respects the parent model’s initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual ‘field$+$particle’ Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.


Sign in / Sign up

Export Citation Format

Share Document