mendelian segregation
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 29)

H-INDEX

24
(FIVE YEARS 1)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 102
Author(s):  
Mingue Kang ◽  
Byeongyong Ahn ◽  
Seungyeon Youk ◽  
Yun-Mi Lee ◽  
Jong-Joo Kim ◽  
...  

Genetic analysis of the hair-length of Sapsaree dogs, a Korean native dog breed, showed a dominant mode of inheritance for long hair. Genome-Wide Association Study (GWAS) analysis and subsequent Mendelian segregation analysis revealed an association between OXR1, RSPO2, and PKHD1L1 on chromosome 13 (CFA13). We identified the previously reported 167 bp insertion in RSPO2 3’ untranslated region as a causative mutation for hair length variations. The analysis of 118 dog breeds and wolves revealed the selection signature on CFA13 in long-haired breeds. Haplotype analysis showed the association of only a few specific haplotypes to the breeds carrying the 167 bp insertion. The genetic diversity in the neighboring region linked to the insertion was higher in Sapsarees than in other Asian and European dog breeds carrying the same variation, suggesting an older history of its insertion in the Sapsaree genome than in that of the other breeds analyzed in this study. Our results show that the RSPO2 3’ UTR insertion is responsible for not only the furnishing phenotype but also determining the hair length of the entire body depending on the genetic background, suggesting an epistatic interaction between FGF5 and RSPO2 influencing the hair-length phenotype in dogs.


2021 ◽  
Vol 58 (4) ◽  
pp. 463-476
Author(s):  
OG Abraham ◽  
JO Faluyi ◽  
CC Nwokeocha

This study explored the underlining reproductive factors that cause sterility in rice, using hybrids obtained from crosses among landrace selections and improved varieties. The study was carried out between 2016 and 2018. Nine landrace cultivars and two improved varieties were involved in the hybridization experiment. Among the 17 putative hybrids that were obtained, only 5 were confirmed as true hybrids. Meiotic chromosome studies and pollen studies in the F1, and Mendelian segregation studies for fertility in the F2 were carried out. Some F2 lines were monitored to F3 to ascertain the level of fixation of gene combinations for fertility. The results obtained from the chromosomal studies showed that phenomena such as laggards, precocious movements, formation of multivalents, and unequal segregation to the poles are associated with pollen sterility in all - 5 hybrids, at the F1 and F2 generations. The indehiscence of anthers contributed to infertility due to pollen shortage than the fertility of the pollens themselves. Even though in males, there is a preponderance of male sterility, female sterility is also a phenomenon that is possibly contributing to inter-varietal sterility. The segregational pattern of 13:3 was observed for fertility in the F2 which suggests the inhibition of fertility by a gene in the dominant state. There was the restoration of fertility in many of the lines advanced to the F3 to up to 93 % fertility. It was, therefore, concluded from the study that landraces of rice still hold the key for the rice crop improvement and should therefore be conserved.


2021 ◽  
Author(s):  
Beatriz Navarro-Dominguez ◽  
Ching-Ho Chang ◽  
Cara Brand ◽  
Christina Muirhead ◽  
Daven Presgraves ◽  
...  

Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation to gain preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing alternative alleles. While at least two loci are important for male drive- the driver and the target- linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversion on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over and with wildtype chromosomes only via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.


Author(s):  
Daiane Aparecida Zuanetti ◽  
Luis Aparecido Milan

In this paper, we propose a new Bayesian approach for QTL mapping of family data. The main purpose is to model a phenotype as a function of QTLs’ effects. The model considers the detailed familiar dependence and it does not rely on random effects. It combines the probability for Mendelian inheritance of parents’ genotype and the correlation between flanking markers and QTLs. This is an advance when compared with models which use only Mendelian segregation or only the correlation between markers and QTLs to estimate transmission probabilities. We use the Bayesian approach to estimate the number of QTLs, their location and the additive and dominance effects. We compare the performance of the proposed method with variance component and LASSO models using simulated and GAW17 data sets. Under tested conditions, the proposed method outperforms other methods in aspects such as estimating the number of QTLs, the accuracy of the QTLs’ position and the estimate of their effects. The results of the application of the proposed method to data sets exceeded all of our expectations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyang Guo ◽  
Jinghan Jiang ◽  
Ying Liu ◽  
Lili Yu ◽  
Ruzhen Chang ◽  
...  

Salinity is an important abiotic stress factor that affects growth and yield of soybean. NY36-87 is a wild soybean germplasm with high salt tolerance. In this study, two F2:3 mapping populations derived from NY36-87 and two salt-sensitive soybean cultivars, Zhonghuang39 and Peking, were used to map salt tolerance-related genes. The two populations segregated as 1 (tolerant):2 (heterozygous):1 (sensitive), indicating a Mendelian segregation model. Using simple sequence repeat (SSR) markers together with the bulked segregant analysis (BSA) mapping strategy, we mapped a salt tolerance locus on chromosome 03 in F2:3 population Zhonghuang39×NY36-87 to a 98-kb interval, in which the known gene GmSALT3 co-segregated with the salt tolerance locus. In the F2:3 population of Peking×NY36-87, the dominant salt tolerance-associated gene was detected and mapped on chromosome 18. We named this gene GmSALT18 and fine mapped it to a 241-kb region. Time course analysis and a grafting experiment confirmed that Peking accumulated more Na+ in the shoot via a root-based mechanism. These findings reveal that the tolerant wild soybean line NY36-87 contains salt tolerance-related genes GmSALT3 and GmSALT18, providing genetic material and a novel locus for breeding salt-tolerant soybean.


2021 ◽  
Author(s):  
Benjamin Jaegle ◽  
Luz Mayela Soto-Jimenez ◽  
Robin Burns ◽  
Fernando A. Rabanal ◽  
Magnus Nordborg

Background: It is becoming apparent that genomes harbor massive amounts of structural variation, and that this variation has largely gone undetected for technical reasons. In addition to being inherently interesting, structural variation can cause artifacts when short-read sequencing data are mapped to a reference genome. In particular, spurious SNPs (that do not show Mendelian segregation) may result from mapping of reads to duplicated regions. Recalling SNP using the raw reads of the 1001 Arabidopsis Genomes Project we identified 3.3 million heterozygous SNPs (44% of total). Given that Arabidopsis thaliana (A. thaliana) is highly selfing, we hypothesized that these SNPs reflected cryptic copy number variation, and investigated them further. Results: While genuine heterozygosity should occur in tracts within individuals, heterozygosity at a particular locus is instead shared across individuals in a manner that strongly suggests it reflects segregating duplications rather than actual heterozygosity. Focusing on pseudo-heterozygosity in annotated genes, we used GWAS to map the position of the duplicates, identifying 2500 putatively duplicated genes. The results were validated using de novo genome assemblies from six lines. Specific examples included an annotated gene and nearby transposon that, in fact, transpose together. Conclusions: Our study confirms that most heterozygous SNPs calls in A. thaliana are artifacts, and suggest that great caution is needed when analysing SNP data from short-read sequencing. The finding that 10% of annotated genes are copy-number variables, and the realization that neither gene- nor transposon-annotation necessarily tells us what is actually mobile in the genome suggest that future analyses based on independently assembled genomes will be very informative.


2021 ◽  
Vol 22 (22) ◽  
pp. 12156
Author(s):  
Akmaral Baidyussen ◽  
Satyvaldy Jatayev ◽  
Gulmira Khassanova ◽  
Bekzak Amantayev ◽  
Grigory Sereda ◽  
...  

Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.


2021 ◽  
Author(s):  
Claire Oget-Ebrad ◽  
Naveen Kumar Kadri ◽  
Gabriel Costa Monteiro Moreira ◽  
Latifa Karim ◽  
Wouter Coppieters ◽  
...  

Background: Accurate haplotype reconstruction is required in many applications in quantitative and population genomics. Different phasing methods are available but their accuracy must be evaluated for samples with different properties (population structure, marker density, etc.). We herein took advantage of whole-genome sequence data available for a Holstein cattle pedigree containing 264 individuals, including 98 trios, to evaluate several population-based phasing methods. This data represents a typical example of a livestock population, with low effective population size, high levels of relatedness and long-range linkage disequilibrium. Results: After stringent filtering of our sequence data, we evaluated several population-based phasing programs including one or more versions of AlphaPhase, ShapeIT, Beagle, Eagle and FImpute. To that end we used 98 individuals having both parents sequenced for validation. Their haplotypes reconstructed based on Mendelian segregation rules were considered the gold standard to assess the performance of population-based methods in two scenarios. In the first one, only these 98 individuals were phased, while in the second one, all the 264 sequenced individuals were phased simultaneously, ignoring the pedigree relationships. We assessed phasing accuracy based on switch error counts (SEC) and rates (SER), lengths of correctly phased haplotypes and pairwise SNP phasing accuracies (the probability that a pair of SNPs is correctly phased as a function of their distance). For most evaluated metrics or scenarios, the best software was either ShapeIT4.1 or Beagle5.2, both methods resulting in particularly high phasing accuracies. For instance, ShapeIT4.1 achieved a median SEC of 50 per individual and a mean haplotype block length of 24.1 Mb in the second scenario. These statistics are remarkable since the methods were evaluated with a map of 8,400,000 SNPs, and this corresponds to only one switch error every 40,000 phased informative markers. When more relatives were included in the data, FImpute3.0 reconstructed extremely long segments without errors. Conclusions: We report extremely high phasing accuracies in a typical livestock sample of 100 sequenced individuals. ShapeIT4.1 and Beagle5.2 proved to be the most accurate, particularly for phasing long segments. Nevertheless, most tools achieved high accuracy at short distances and would be suitable for applications requiring only local haplotypes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Felipe Bitencourt Martins ◽  
Aline Costa Lima Moraes ◽  
Alexandre Hild Aono ◽  
Rebecca Caroline Ulbricht Ferreira ◽  
Lucimara Chiari ◽  
...  

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.


2021 ◽  
Vol 6 (2) ◽  
pp. 68
Author(s):  
Aditya Wahyudhi ◽  
Lintang Restu Pratiwi ◽  
Panjisakti Basunanda

Two cultivars of local rice, namely Mentik Wangi and Mentik Susu, have been grown around west to south flank of Merapi volcano. They are highly valued for their good taste and cooking characteristics. An attempt to introduce drought-tolerant rice varieties has been conducted by crossing them with two sources, namely Kasalath and Bluebonnet. Molecular-assisted selection using a set of SSR markers was applied to check the F1 and F2 generation trueness and segregation. This research was conducted in the facilities of Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta. The research was a field experiment arranged in a completely randomized design, consisting of Mentik Wangi, Mentik Susu, Bluebonnet, and Kasalath, as well as their crossings’ F1 and F2 plants as treatments. The SSR markers used are RM72, RM228, RM518, and RM20(A). Polymorphism test of the parents showed that polymorphism exists between local and donor parents, thus these markers were considered eligible for the F1 and F2 tests. The heterozygous individuals of F1 were 75% for Bluebonnet × Mentik Wangi, 44.4% for Bluebonnet × Mentik Susu, and 46.7% for Mentik Wangi × Bluebonnet; all were consistent in every primer used. We could not confirm that the F2 populations showed segregation pattern that followed Mendelian segregation in some crosses due to too small size of the sample. Heterozygous individuals in F2 showed the differences pattern for each marker, indicating that the location of the SSR markers were far from each other in the genome.


Sign in / Sign up

Export Citation Format

Share Document