Analysis of Flexible Pavements Comprised of Conventional and High Modulus Asphalt Concrete Subjected to Moving Loading using Linear Viscoelastic Theory

Author(s):  
H.T. Tai Nguyen ◽  
Thanh-Nhan Phan ◽  
Tien-Tho Do ◽  
Duy-Liem Nguyen ◽  
Vu-Tu Tran
2003 ◽  
Vol 125 (1) ◽  
pp. 124-131 ◽  
Author(s):  
J. Crawford Downs ◽  
J-K. Francis Suh ◽  
Kevin A. Thomas ◽  
Anthony J. Bellezza ◽  
Claude F. Burgoyne ◽  
...  

In this report we characterize the viscoelastic material properties of peripapillary sclera from the four quadrants surrounding the optic nerve head in both rabbit and monkey eyes. Scleral tensile specimens harvested from each quadrant were subjected to uniaxial stress relaxation and tensile ramp to failure tests. Linear viscoelastic theory, coupled with a spectral reduced relaxation function, was employed to characterize the viscoelastic properties of the tissues. We detected no differences in the stress-strain curves of specimens from the four quadrants surrounding the optic nerve head (ONH) below a strain of 4 percent in either the rabbit or monkey. While the peripapillary sclera from monkey eyes is significantly stiffer (both instantaneously and in equilibrium) and relaxes more slowly than that from rabbits, we detected no differences in the viscoelastic material properties (tested at strains of 0–1 percent) of sclera from the four quadrants surrounding the ONH within either species group.


1999 ◽  
Author(s):  
Theodore D. Clineff ◽  
Richard E. Debski ◽  
Sven U. Scheffler ◽  
John D. Withrow ◽  
Savio L.-Y. Woo

Abstract The time and history dependent viscoelastic properties have been determined for the normal medial collateral ligament (MCL) of canine (Woo, 1981), porcine anterior cruciate ligament (Kwan, 1993), and human patellar tendon in a cadaver model (Johnson, 1994). The objective of this study was to use a combined experimental and analytical approach to quantify the viscoelastic properties of the intact MCL in a goat model. A thorough understanding of the viscoelastic properties at low strain levels is necessary to future studies of the healing MCL. The quasi-linear viscoelastic theory (QLV) (Fung, 1972) was used to characterize the properties of the MCL during stress relaxation.


1981 ◽  
Vol 103 (4) ◽  
pp. 293-298 ◽  
Author(s):  
S. L.-Y. Woo ◽  
M. A. Gomez ◽  
W. H. Akeson

The viscoelastic properties of the canine medial collateral ligament (MCL) were investigated. Stress-strain relationships at different strain rates, long-term stress relaxation and cyclic stress-strain curves of the MCL were obtained experimentally using a bone-MCL-bone preparation. The experimental data were used in conjunction with the quasi-linear viscoelastic theory as proposed by Fung [15] to characterize the reduced relaxation function, G(t) and elastic response σe (ε) of this tissue. It was found that the quasi-linear viscoelastic theory can adequately describe the time and history-dependent rheological properties of the canine medial collateral ligament.


2015 ◽  
Vol 20 (5) ◽  
pp. 1806-1812
Author(s):  
Sung-Hee Kim ◽  
Kevin McFall ◽  
Jayhyun Kwon ◽  
Jidong Yang ◽  
Jin-Hoon Jeong

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1248-1253
Author(s):  
Myung Kyu Park ◽  
Sang Soon Lee ◽  
Chang Min Suh

This paper deals with the stress singularity developed in a viscoelastic thin layer bonded between two rigid bodies and subjected to a shear loading. A boundary element method is employed to investigate the behavior of interface stresses. Within the context of a linear viscoelastic theory, a stress singularity exists at the point where the interface between one of the rigid adherends and the adhesive layer intersects the free surface. Numerical results are presented for a given viscoelastic model, indicating that such stress singularity might lead to edge crack or delamination.


Author(s):  
Kevin L. Troyer ◽  
Christian M. Puttlitz

Stress relaxation experiments were conducted on cervical spine ligaments at multiple strain magnitudes to determine the validity and applicability of the quasi-linear viscoelastic (QLV) theory to model their dynamic behavior. The results indicate that the shape of the stress relaxation curve is dependent upon the magnitude of the applied strain. Thus, a more general, nonlinear formulation is required to model these ligaments within the physiological strain range.


Sign in / Sign up

Export Citation Format

Share Document