The value of very low frequencies and far offsets for seismic data in the Permian Basin: Case study on a new dense survey from the Central Basin Platform

2022 ◽  
Vol 41 (1) ◽  
pp. 34-39
Author(s):  
Vincent Durussel ◽  
Dongren Bai ◽  
Amin Baharvand Ahmadi ◽  
Scott Downie ◽  
Keith Millis

The depth of penetration and multidimensional characteristics of seismic waves make them an essential tool for subsurface exploration. However, their band-limited nature can make it difficult to integrate them with other types of ground measurements. Consequently, far offsets and very low-frequency components are key factors in maximizing the information jointly inverted from all recorded data. This explains why extending seismic bandwidth and available offsets has become a major industry focus. Although this requirement generally increases the complexity of acquisition and has an impact on its cost, improvements have been clearly and widely demonstrated on marine data. Onshore seismic data have generally followed the same trend but face different challenges, making it more difficult to maximize the benefits, especially for full-waveform inversion (FWI). This paper describes a new dense survey acquired in 2020 in the Permian Basin and aims to objectively assess the quality and benefits brought by a richer low end of the spectrum and far offsets. For this purpose, we considered several aspects, from acquisition design and field data to FWI imaging and quantitative interpretation.

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R385-R400
Author(s):  
Luca Bianchin ◽  
Emanuele Forte ◽  
Michele Pipan

Low-frequency components of reflection seismic data are of paramount importance for acoustic impedance (AI) inversion, but they typically suffer from a poor signal-to-noise ratio. The estimation of the low frequencies of AI can benefit from the combination of a harmonic reconstruction method (based on autoregressive [AR] models) and a seismic-derived interval velocity field. We have developed the construction of a convex cost function that accounts for the velocity field, together with geologic a priori information on AI and its uncertainty, during the AR reconstruction of the low frequencies. The minimization of this function allows one to reconstruct sensible estimates of low-frequency components of the subsurface reflectivity, which lead to an estimation of AI model via a recursive formulation. In particular, the method is suited for an initial and computationally inexpensive assessment of the absolute value of AI even when no well-log data are available. We first tested the method on layered synthetic models, then we analyzed its applicability and limitations on a real marine seismic data set that included tomographic velocity information. Despite a strong trace-to-trace variability in the results, which could partially be mitigated by multitrace inversion, the method demonstrates its capability to highlight lateral variations of AI that cannot be detected when the low frequencies only come from well-log information.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R275-R288 ◽  
Author(s):  
Hongyu Sun ◽  
Laurent Demanet

The lack of low-frequency information and a good initial model can seriously affect the success of full-waveform inversion (FWI), due to the inherent cycle skipping problem. Computational low-frequency extrapolation is in principle the most direct way to address this issue. By considering bandwidth extension as a regression problem in machine learning, we have adopted an architecture of convolutional neural network (CNN) to automatically extrapolate the missing low frequencies. The band-limited recordings are the inputs of the CNN, and, in our numerical experiments, a neural network trained from enough samples can predict a reasonable approximation to the seismograms in the unobserved low-frequency band, in phase and in amplitude. The numerical experiments considered are set up on simulated P-wave data. In extrapolated FWI (EFWI), the low-wavenumber components of the model are determined from the extrapolated low frequencies, before proceeding with a frequency sweep of the band-limited data. The introduced deep-learning method of low-frequency extrapolation shows adequate generalizability for the initialization step of EFWI. Numerical examples show that the neural network trained on several submodels of the Marmousi model is able to predict the low frequencies for the BP 2004 benchmark model. Additionally, the neural network can robustly process seismic data with uncertainties due to the existence of random noise, a poorly known source wavelet, and a different finite-difference scheme in the forward modeling operator. Finally, this approach is not subject to strong assumptions on signals or velocity models of other methods for bandwidth extension and seems to offer a tantalizing solution to the problem of properly initializing FWI.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. R199-R206 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.


Sign in / Sign up

Export Citation Format

Share Document