Large Eddy Simulations of Flow past a Circular Cylinder with/without an Upper Rivulet

2011 ◽  
Vol 90-93 ◽  
pp. 851-856
Author(s):  
Xiao Qing Du ◽  
Yan Zhao

Large eddy simulation (LES) is utilized to simulate flow around a circular cylinder with/without an upper rivulet at Reynolds number 70000. Mean and fluctuating wind pressure coefficients on the artificial upper rivulet and the circular cylinder are obtained. The flow field and the vorticity magnitude in the wake flow zone of the cable model with rivulet at different positions were also investigated. It is found that a small vortex occur near the back of rivulet, when it locates in some particular positions, that might be the reason aerodynamic forces changing dramatically. These results lay foundation for the research on regulation about the influence of rivulet size and shape on cable aerodynamic in future.

2006 ◽  
Vol 129 (6) ◽  
pp. 780-790 ◽  
Author(s):  
M. Tutar ◽  
I. Celik ◽  
I. Yavuz

A random flow generation (RFG) algorithm for a previously established large eddy simulation (LES) code is successfully incorporated into a finite element fluid flow solver to generate the required inflow/initial turbulence boundary conditions for the three-dimensional (3D) LES computations of viscous incompressible turbulent flow over a nominally two-dimensional (2D) circular cylinder at Reynolds number of 140,000. The effect of generated turbulent inflow boundary conditions on the near wake flow and the shear layer and on the prediction of integral flow parameters is studied based on long time average results. Because the near-wall region cannot be resolved for high Reynolds number flows, no-slip velocity boundary function is used, but wall effects are taken into consideration with a near-wall modeling methodology that comprises the no-slip function with a modified form of van Driest damping approach to reduce the subgrid length scale in the vicinity of the cylinder wall. Simulations are performed for a 2D and a 3D configuration, and the simulation results are compared to each other and to the experimental data for different turbulent inflow boundary conditions with varying degree of inflow turbulence to assess the functionality of the RFG algorithm for the present LES code and, hence, its influence on the vortex shedding mechanism and the resulting flow field predictions.


Author(s):  
Guillaume Fournier ◽  
Ste´phanie Pellerin ◽  
Loc Ta Phuoc

Large Eddy Simulations are performed on a turbulent flow past a circular cylinder with control using velocity-vorticity formulation. The effect of two control methods is analyzed considering aerodynamic coefficients. The influence of rotation and suction velocities is studied. The cylinder rotation and the boundary layer suction induce a lift creation and an increase of lift with control magnitude. Lift value also depends strongly on the suction location which has to be in the vicinity of the separation point.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3745
Author(s):  
Tristan Revaz ◽  
Fernando Porté-Agel

Large-eddy simulation (LES) with actuator models has become the state-of-the-art numerical tool to study the complex interaction between the atmospheric boundary layer (ABL) and wind turbines. In this paper, a new evaluation of actuator disk models (ADMs) for LES of wind turbine flows is presented. Several details of the implementation of such models are evaluated based on a test case studied experimentally. In contrast to other test cases used in previous similar studies, the present test case consists of a wind turbine immersed in a realistic turbulent boundary-layer flow, for which accurate data for the turbine, the flow, the thrust and the power are available. It is found that the projection of the forces generated by the turbine into the flow solver grid is crucial for rotor predictions, especially for the power, and less important for the wake flow prediction. In this context, the projection of the forces into the flow solver grid should be as accurate as possible, in order to conserve the consistency between the computed axial velocity and the projected axial force. Also, the projection of the force is found to be much more important in the rotor plane directions than in the streamwise direction. It is found that for the case of a wind turbine immersed in a realistic turbulent boundary-layer flow, the potential spurious numerical oscillations originating from sharp force projections are not harmful to the results. By comparing an advanced model which computes the non-uniform distribution of the turbine forces over the rotor with a simple model which assumes uniform effects of the turbine forces, it is found that both can lead to accurate results for the far wake flow and the thrust and power predictions. However, the comparison shows that the advanced model leads to better results for the near wake flow. In addition, it is found that the simple model overestimates the rotor velocity prediction in comparison to the advanced model. These elements are explained by the lack of local feedback between the axial velocity and the axial force in the simple model. By comparing simulations with and without including the effects of the nacelle and tower, it is found that the consideration of the nacelle and tower is relatively important both for the near wake and the power prediction, due to the shadow effects. The grid resolution is not found to be critical once a reasonable resolution is used, i.e. in the order of 10 grid points along each direction across the rotor. The comparison with the experimental data shows that an accurate prediction of the flow, thrust, and power is possible with a very reasonable computational cost. Overall, the results give important guidelines for the implementation of ADMs for LES.


Author(s):  
Jongwook Joo ◽  
Gorazd Medic ◽  
Om Sharma

Large eddy simulations over a NACA65 compressor cascade with roughness were performed for multiple roughness heights. The experiments show flow separation as airfoil roughness is increased. In LES computations, surface roughness was represented by regularly arranged discrete elements using guidelines from Schlichting. Results from wall-resolved LES indicate that specifying an equivalent sandgrain roughness height larger than the one in experiments is required to reproduce the same effects observed in experiments. This highlights the persisting uncertainty with matching the experimental roughness geometry in LES computations, pointing towards surface imaging and digitization as a potential solution. Some initial analysis of flow physics has been conducted with the aim of guiding the RANS modeling for roughness.


2012 ◽  
Vol 232 ◽  
pp. 471-476 ◽  
Author(s):  
Rui Zhao ◽  
Chao Yan

The flow past a circular cylinder at a subcritical Reynolds number 3900 was simulated by the method of detached-eddy simulation (DES). The objective of this present work is not to investigate the physical phenomena of the flow but to study modeling as well as numerical aspects which influence the quality of DES solutions in detail. Firstly, four typical spanwise lengths are chosen and the results are systematically compared. The trend of DES results along the span increment is different from previous large-eddy simulation (LES) investigation. A wider spanwise length does not necessary improve the results. Then, the influence of mesh resolution is studied and found that both too coarse and over refined grids will deteriorate the performance of DES. Finally, different orders of numerical schemes are applied in the inviscid fluxes and the viscous terms. The discrepancies among different schemes are found tiny. However, the instantaneous flow structures produced by 5th order WENO with 4th order central differencing scheme are more abundant than the others. That is, for the time-averaged quantities, the second-order accurate schemes are effective enough, whereas the higher-order accurate methods are needed to resolve the transient characteristics of the flow.


Sign in / Sign up

Export Citation Format

Share Document