Lattice Boltzmann Simulation of Steady Flow in a Semi-Elliptical Cavity

2017 ◽  
Vol 21 (3) ◽  
pp. 692-717 ◽  
Author(s):  
Junjie Ren ◽  
Ping Guo

AbstractThe lattice Boltzmann method is employed to simulate the steady flow in a two-dimensional lid-driven semi-elliptical cavity. Reynolds number (Re) and vertical-to-horizontal semi-axis ratio (D) are in the range of 500-5000 and 0.1-4, respectively. The effects of Re and D on the vortex structure and pressure field are investigated, and the evolutionary features of the vortex structure with Re and D are analyzed in detail. Simulation results show that the vortex structure and its evolutionary features significantly depend on Re and D. The steady flow is characterized by one vortex in the semi-elliptical cavity when both Re and D are small. As Re increases, the appearance of the vortex structure becomes more complex. When D is less than 1, increasing D makes the large vortexes more round, and the evolution of the vortexes with D becomes more complex with increasing Re. When D is greater than 1, the steady flow consists of a series of large vortexes which superimpose on each other. As Re and D increase, the number of the large vortexes increases. Additionally, a small vortex in the upper-left corner of the semi-elliptical cavity appears at a large Re and its size increases slowly as Re increases. The highest pressures appear in the upper-right corner and the pressure changes drastically in the upper-right region of the cavity. The total pressure differences in the semi-elliptical cavity with a fixed D decrease with increasing Re. In the region of themain vortex, the pressure contours nearly coincide with the streamlines, especially for the cavity flow with a large Re.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
L. El Moutaouakil ◽  
Z. Zrikem ◽  
A. Abdelbaki

Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal (case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1≤B≤0.4), and the Rayleigh number (103≤Ra≤106).


2015 ◽  
pp. 157-168
Author(s):  
Natasa Lukic ◽  
Predrag Tekic ◽  
Jelena Radjenovic ◽  
Ivana Sijacki

The present study is concerned with two-sided lid-driven incompressible flow in rectangular, deep cavities applying lattice Boltzmann method. After validating the code for the square cavity, solutions for cavities with an aspect ratio 1.5 and 4 were obtained for the Reynolds numbers of 100, 400, 1000 and 3200. The influence of the Reynolds number and aspect ratio on the flow pattern and on the characteristics of vortices inside the cavity was studied. Symmetric flow pattern was obtained for all investigated cases. The middle of the cavity is mostly influenced by the increase in the aspect ratio. Critical aspect ratio, at which the birth of a primary vortex in the middle of the cavity takes place, was determined to be between 2.7 and 2.725.


2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


2020 ◽  
Vol 10 (13) ◽  
pp. 4543 ◽  
Author(s):  
Takeshi Asai ◽  
Yasumi Nakanishi ◽  
Nakaba Akiyama ◽  
Sungchan Hong

Various studies have been conducted on the aerodynamic characteristics of nonspinning and spinning soccer balls. However, the vortex structures in the wake of the balls are almost unknown. One of the main computational fluid dynamics methods used for the analysis of vortex structures is the lattice Boltzmann method as it facilitates high-precision analysis. Studies to elucidate the dominant vortex structure are important because curled shots and passes involving spinning balls are frequently used in actual soccer games. In this study, we identify the large-scale dominant vortex structure of a soccer ball and investigate the stability of the structure using the lattice Boltzmann method, wind tunnel tests, and free-flight experiments. One of the dominant vortex structures in the wake of both nonspinning and spinning balls is a large-scale counter-rotating vortex pair. The side force acting on a spinning ball stabilizes when the fluctuation of the separation points of the ball is suppressed by the rotation of the ball. Thus, although a spinning soccer ball is deflected by the Magnus effect, its trajectory is regular and stable, suggesting that a spinning ball can be aimed accurately at the outset of its course.


Author(s):  
Nishitha Thummala ◽  
Dimitrios V. Papavassiliou

This work presents a Lagrangian approach to simulate convective heat transfer in small scales. The fully developed flow field, simulated by a Lattice Boltzmann Method, is combined with Lagrangian tracking of thermal markers to determine the behavior of an instantaneous scalar line source located at the wall of a channel. The resulting probability density functions are used to calculate the behavior of continuous line sources of heat at the wall of the channel, as well as the temperature for the case of constant temperature or constant heat flux from the wall. This method is resourceful in terms of computational efficiency, in that it can be used to simulate various thermal boundary conditions and Prandtl number fluids with a single flow field resulting from a Lattice Boltzmann simulation.


Author(s):  
Keqiang Xing ◽  
Yong Tao

The lattice Boltzmann method (LBM) as a relatively new numerical scheme has recently achieved considerable success in simulating fluid flows and associated transport phenomena. However, application of this method to heat transfer problems has been at a stage of infancy. In this work, a thermal lattice Boltzmann model is employed to simulate a two-dimensional, steady flow in a symmetric bifurcation under constant temperature and constant heat flux boundary conditions. The bifurcation effects on the heat transfer and fluid flow are investigated and comparisons are made with the straight tube. Also, different bifurcation angles are simulated and the results are compared with the work of the other researchers.


2020 ◽  
Vol 15 (3) ◽  
pp. 443-449
Author(s):  
Zhang Shusheng ◽  
Lu Hao ◽  
Zhang Li-Zhi ◽  
Riffat Saffa ◽  
Ure Zafer ◽  
...  

Abstract In this paper, oblique impact of a single rain droplet on super-hydrophobic surface with randomly distributed rough structures was investigated by lattice Boltzmann method. The effects of the impact angle of the droplet as well as the skewness and kurtosis of rough surface on the bouncing ability of the droplet were in this paper. It was found that the oblique impact can effectively reduce the contact time in the process of droplet bouncing off, because the energy consumption caused by the pinning effect is reduced. Moreover, the contact time most possibly reaches the shortest when the impact angle is 45°. Decreasing the skewness and keeping the kurtosis around 4.0 can enhance the bouncing ability during the droplet oblique impact on randomly distributed rough surfaces. The results are useful for the design of building structures.


Author(s):  
Yiqiang Liang ◽  
Yongchen Song ◽  
Weizhong Li

In this work, we simulate natural miscible process and miscible fluids displacement in pore space by using lattice-Boltzmann method. In the natural miscible case, the results including concentration profile and thickness of miscible zone agree well with analytical solutions, which verifies the model’s reliability and veracity. The viscosity ratio is also taken into account to study its influence on the miscible process. Furthermore, we apply pressure boundary at inlet and outlet of the channel to study the displacement of miscible fluids. The whole process, in general, is divided into three phases: fluid flow rate increasing driven by pressure gradient, transitional period, and relatively stable stage. And we carefully give each phase explanations of physical mechanisms. The numerical results provide a good understanding of the mechanisms of miscible fluids displacement and confirm that the LBM can be a promising tool for investigating miscible fluids behavior.


2015 ◽  
Vol 29 (16) ◽  
pp. 1550104 ◽  
Author(s):  
Dong Guan ◽  
Jiu Hui Wu ◽  
Li Jing ◽  
Kuan Lu

Lattice Boltzmann method (LBM) is utilized to model the acoustic resistance in microchannels at mesoscopic scale in this paper. Sound pressure distribution at different positions are studied. A number of physical parameters, such as the wavelength, channel number, channel width and length are investigated to find their effects on pressure variation. Simulation results are compared with those obtained by traditional methods and demonstrate that the LBM is a helpful approach to study sound attenuation in microchannels at mesoscopic scale. These results have potential application for designing the high-efficiency sound absorbers.


Sign in / Sign up

Export Citation Format

Share Document