disaster recovery system
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Bong-Hyun Kim

Even before the September 11 terrorist attacks in the United States in 2001, information systems prepared against disasters in Korea were extremely weak. However, as various domestic and foreign accident cases have occurred, it is recognized that preparations for this are necessary. Accordingly, at present, each institution has prepared and implemented various backup policies to protect the institution's information and data in case of disaster. Therefore, in this paper, we conducted a study to design a more stable and efficient disaster recovery system by building redundancy for server operating in integrated data center. To do this, we analyzed the redundancy design for the integrated disaster recovery server and designed the overall system configuration. Also, the design results were analyzed by testing web server redundancy and switch redundancy. In this paper, the proposed design method for stabilization and efficiency of disaster recovery system is the redundant construction of integrated server and switch. In other words, the disaster recovery system was composed of active storage and standby storage, and data stabilization was promoted through real-time replication of each other. In the existing disaster recovery system, there is a problem in stabilizing replication because there is no monitoring system for internal replication between storage arrays. To solve this problem, we designed a system that replicates all data in active storage to standby storage in real time and monitors the replication status. Therefore, introducing service conversion automation from the main system, which is the method designed in this paper, to the disaster recovery system, improves the stability and reliability of the service of the local governments, so that it is possible to operate a more efficient and advanced disaster recovery system.


2020 ◽  
Vol 21 (3) ◽  
pp. 391-406
Author(s):  
Madhavi Devi B ◽  
Smriti Agrawal ◽  
R. Rajeshwara Rao

Disasters are inevitable, but their impact can be mitigated with careful planning. An IoT-based network with limited resources can be used in the post-disaster recovery. However, the resource of common interest creates contention among its contenders. This contention leads to tussle which in turn may lead to a deadlock. Some of the existing techniques prevent or avoid deadlock by performing stringent testing with significant testing overhead. While others propose recovery action after the deadlock is detected with significant overhead. A deadlock leads to a breakdown of the post-disaster recovery system while testing overhead implies delayed response either case can lead to catastrophic losses. This paper presents a new class of techniques that do not perform stringent testing before allocating the resources but still ensure that the system is deadlock-free and the overhead is also minimal. The proposed technique suggests reserving a portion of the resources to ensure no deadlock would occur. The correctness of the technique is proved in the form of theorems. The average turnaround time is approximately 18%  lower for the proposed technique over Banker’s algorithm and also an optimal overhead of O(m).  


2020 ◽  
Vol 9 (1) ◽  
pp. 2371-2373

In recent decade’s severe natural or artificial disaster and further geologic processes have occurred with catastrophic consequences. Timely it should be detected and make it recovery. So, in this paper, we had proposed a multiterrain robot and other software systems to ease the detection. As the demand for multi-terrain robot applications are increasing significantly. This robot can be deployed for the use of assured future surveillance and extricate purposes in the isolated areas. In isolated areas robot stability will be challenging task due to varied terrain. A new design is propounded for the mobile robot which aims to execute monitoring performances while travelling on terrain types in balanced way. A chain-wheeled multi-terrain robot has been evolved which has ability to run in rough and unmanned surfaces.


Sign in / Sign up

Export Citation Format

Share Document