scholarly journals Sharp Minimum Degree Conditions for the Existence of Disjoint Theta Graphs

10.37236/9670 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Emily Marshall ◽  
Michael Santana

In 1963, Corrádi and Hajnal showed that if $G$ is an $n$-vertex graph with  $n \ge 3k$ and $\delta(G) \ge 2k$, then $G$ will contain $k$ disjoint cycles; furthermore, this result is best possible, both in terms of the number of vertices as well as the minimum degree. In this paper we focus on an analogue of this result for theta graphs.  Results from Kawarabayashi and Chiba et al. showed that if $n = 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k \rceil$, or if $n$ is large with respect to $k$ and $\delta(G) \ge 2k+1$, respectively, then $G$ contains $k$ disjoint theta graphs.  While the minimum degree condition in both results are sharp for the number of vertices considered, this leaves a gap in which no sufficient minimum degree condition is known. Our main result in this paper resolves this by showing if $n \ge 4k$ and $\delta(G) \ge \lceil \frac{5}{2}k\rceil$, then $G$ contains $k$ disjoint theta graphs. Furthermore, we show this minimum degree condition is sharp for more than just $n = 4k$, and we discuss how and when the sharp minimum degree condition may transition from $\lceil \frac{5}{2}k\rceil$ to $2k+1$.

Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Mikhail Lavrov ◽  
Xujun Liu

Abstract A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$ , then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour. Our result is tight in the sense that no longer cycles (of length $>2t+r$ ) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$ -vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$ , in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$ .


10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 129-139 ◽  
Author(s):  
RALPH J. FAUDREE ◽  
RONALD J. GOULD ◽  
MICHAEL S. JACOBSON

A graph is claw-free if it does not contain an induced subgraph isomorphic to K1,3. Cycles in claw-free graphs have been well studied. In this paper we extend results on disjoint cycles in claw-free graphs satisfying certain minimum degree conditions. In particular, we prove that if G is claw-free of sufficiently large order n = 3k with δ(G) ≥ n/2, then G contains k disjoint triangles.


2020 ◽  
Vol 8 ◽  
Author(s):  
Katherine Staden ◽  
Andrew Treglown

Abstract The bandwidth theorem of Böttcher, Schacht, and Taraz [Proof of the bandwidth conjecture of Bollobás andKomlós, Mathematische Annalen, 2009] gives a condition on the minimum degree of an n-vertex graph G that ensures G contains every r-chromatic graph H on n vertices of bounded degree and of bandwidth $o(n)$ , thereby proving a conjecture of Bollobás and Komlós [The Blow-up Lemma, Combinatorics, Probability, and Computing, 1999]. In this paper, we prove a version of the bandwidth theorem for locally dense graphs. Indeed, we prove that every locally dense n-vertex graph G with $\delta (G)> (1/2+o(1))n$ contains as a subgraph any given (spanning) H with bounded maximum degree and sublinear bandwidth.


2016 ◽  
Vol Vol. 17 no. 3 (Graph Theory) ◽  
Author(s):  
Shih-Yan Chen ◽  
Shin-Shin Kao ◽  
Hsun Su

International audience Assume that $n, \delta ,k$ are integers with $0 \leq k < \delta < n$. Given a graph $G=(V,E)$ with $|V|=n$. The symbol $G-F, F \subseteq V$, denotes the graph with $V(G-F)=V-F$, and $E(G-F)$ obtained by $E$ after deleting the edges with at least one endvertex in $F$. $G$ is called <i>$k$-vertex fault traceable</i>, <i>$k$-vertex fault Hamiltonian</i>, or <i>$k$-vertex fault Hamiltonian-connected</i> if $G-F$ remains traceable, Hamiltonian, and Hamiltonian-connected for all $F$ with $0 \leq |F| \leq k$, respectively. The notations $h_1(n, \delta ,k)$, $h_2(n, \delta ,k)$, and $h_3(n, \delta ,k)$ denote the minimum number of edges required to guarantee an $n$-vertex graph with minimum degree $\delta (G) \geq \delta$ to be $k$-vertex fault traceable, $k$-vertex fault Hamiltonian, and $k$-vertex fault Hamiltonian-connected, respectively. In this paper, we establish a theorem which uses the degree sequence of a given graph to characterize the $k$-vertex fault traceability/hamiltonicity/Hamiltonian-connectivity, respectively. Then we use this theorem to obtain the formulas for $h_i(n, \delta ,k)$ for $1 \leq i \leq 3$, which improves and extends the known results for $k=0$.


2013 ◽  
Vol 22 (5) ◽  
pp. 684-699 ◽  
Author(s):  
MICHAEL FERRARA ◽  
MICHAEL JACOBSON ◽  
FLORIAN PFENDER

Given a (multi)digraph H, a digraph D is H-linked if every injective function ι:V(H) → V(D) can be extended to an H-subdivision. In this paper, we give sharp degree conditions that ensure a sufficiently large digraph D is H-linked for arbitrary H. The notion of an H-linked digraph extends the classes of m-linked, m-ordered and strongly m-connected digraphs.First, we give sharp minimum semi-degree conditions for H-linkedness, extending results of Kühn and Osthus on m-linked and m-ordered digraphs. It is known that the minimum degree threshold for an undirected graph to be H-linked depends on a partition of the (undirected) graph H into three parts. Here, we show that the corresponding semi-degree threshold for H-linked digraphs depends on a partition of H into as many as nine parts.We also determine sharp Ore–Woodall-type degree-sum conditions ensuring that a digraph D is H-linked for general H. As a corollary, we obtain (previously undetermined) sharp degree-sum conditions for m-linked and m-ordered digraphs.


2020 ◽  
Author(s):  
Robert Šámal ◽  
Amanda Montejano ◽  
Sebastián González Hermosillo de la Maza ◽  
Matt DeVos ◽  
Ron Aharoni

Mantel's Theorem from 1907 is one of the oldest results in graph theory: every simple $n$-vertex graph with more than $\frac{1}{4}n^2$ edges contains a triangle. The theorem has been generalized in many different ways, including other subgraphs, minimum degree conditions, etc. This article deals with a generalization to edge-colored multigraphs, which can be viewed as a union of simple graphs, each corresponding to an edge-color class. The case of two colors is the same as the original setting: Diwan and Mubayi proved that any two graphs $G_1$ and $G_2$ on the same set of $n$ vertices, each containing more than $\frac{1}{4}n^2$ edges, give rise to a triangle with one edge from $G_1$ and two edges from $G_2$. The situation is however different for three colors. Fix $\tau=\frac{4-\sqrt{7}}{9}$ and split the $n$ vertices into three sets $A$, $B$ and $C$, such that $|B|=|C|=\lfloor\tau n\rfloor$ and $|A|=n-|B|-|C|$. The graph $G_1$ contains all edges inside $A$ and inside $B$, the graph $G_2$ contains all edges inside $A$ and inside $C$, and the graph $G_3$ contains all edges between $A$ and $B\cup C$ and inside $B\cup C$. It is easy to check that there is no triangle with one edge from $G_1$, one from $G_2$ and one from $G_3$; each of the graphs has about $\frac{1+\tau^2}{4}n^2=\frac{26-2\sqrt{7}}{81}n^2\approx 0.25566n^2$ edges. The main result of the article is that this construction is optimal: any three graphs $G_1$, $G_2$ and $G_3$ on the same set of $n$ vertices, each containing more than $\frac{1+\tau^2}{4}n^2$ edges, give rise to a triangle with one edge from each of the graphs $G_1$, $G_2$ and $G_3$. A computer-assisted proof of the same bound has been found by Culver, Lidický, Pfender and Volec.


10.37236/7049 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
András Gyárfás ◽  
Gábor Sárközy

It is well-known that in every $k$-coloring of the edges of the complete graph $K_n$ there is a monochromatic connected component of order at least ${n\over k-1}$. In this paper we study an extension of this problem by replacing complete graphs by graphs of large minimum degree. For $k=2$ the authors proved that $\delta(G)\ge{3n\over 4}$ ensures a monochromatic connected component with at least $\delta(G)+1$ vertices in every $2$-coloring of the edges of a graph $G$ with $n$ vertices. This result is sharp, thus for $k=2$ we really need a complete graph to guarantee that one of the colors has a monochromatic connected spanning subgraph. Our main result here is  that for larger values of $k$ the situation is different, graphs of minimum degree $(1-\epsilon_k)n$ can replace complete graphs and still there is a monochromatic connected component of order at least ${n\over k-1}$, in fact $$\delta(G)\ge \left(1 - \frac{1}{1000(k-1)^9}\right)n$$ suffices.Our second result is an improvement of this bound for $k=3$. If the edges of $G$ with  $\delta(G)\geq {9n\over 10}$ are $3$-colored, then there is a monochromatic component of order at least ${n\over 2}$. We conjecture that this can be improved to ${7n\over 9}$ and for general $k$ we conjecture the following: if $k\geq 3$ and  $G$ is a graph of order $n$ such that $\delta(G)\geq \left( 1 - \frac{k-1}{k^2}\right)n$, then in any $k$-coloring of the edges of $G$ there is a monochromatic connected component of order at least ${n\over k-1}$.


2020 ◽  
Author(s):  
Peter Allen ◽  
Julia Böttcher ◽  
Julia Ehrenmüller ◽  
Anusch Taraz

One of the first results in graph theory was Dirac's theorem which claims that if the minimum degree in a graph is at least half of the number of vertices, then it contains a Hamiltonian cycle. This result has inspired countless other results all stating that in dense graphs we can find sparse spanning subgraphs. Along these lines, one of the most far-reaching results is the celebrated _Bandwidth Theorem_, proved around 10 years ago by Böttcher, Schacht, and Taraz. It states, rougly speaking, that every $n$-vertex graph with minimum degree at least $\left( \frac{r-1}{r} + o(1)\right) n$ contains a copy of all $n$-vertex graphs $H$ such that $\chi(H) \leq r$, $\Delta (H) = O(1)$, and the bandwidth of $H$ is $o(n)$. This was conjectured earlier by Bollobás and Komlós. The proof is using the Regularity method based on the Regularity Lemma and the Blow-up Lemma. Ever since the Bandwith Theorem came out, it has been open whether one could prove a similar statement for sparse random graphs. In this remarkable, deep paper the authors do just that, they establish sparse random analogues of the Bandwidth Theorem. In particular, the authors show that, for every positive integer $\Delta$, if $p \gg \left(\frac{\log{n}}{n}\right)^{1/\Delta}$, then asymptotically almost surely, every subgraph $G\subseteq G(n, p)$ with $\delta(G) \geq \left( \frac{r-1}{r} + o(1)\right) np$ contains a copy of every $r$-colourable spanning (i.e., $n$-vertex) graph $H$ with maximum degree at most $\Delta$ and bandwidth $o(n)$, provided that $H$ contains at least $C p^{-2}$ vertices that do not lie on a triangle (of $H$). (The requirement about vertices not lying on triangles is necessary, as pointed out by Huang, Lee, and Sudakov.) The main tool used in the proof is the recent monumental sparse Blow-up Lemma due to Allen, Böttcher, Hàn, Kohayakawa, and Person.


10.37236/293 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Peter Allen

By using the Szemerédi Regularity Lemma, Alon and Sudakov recently extended the classical Andrásfai-Erdős-Sós theorem to cover general graphs. We prove, without using the Regularity Lemma, that the following stronger statement is true. Given any $(r+1)$-partite graph $H$ whose smallest part has $t$ vertices, there exists a constant $C$ such that for any given $\varepsilon>0$ and sufficiently large $n$ the following is true. Whenever $G$ is an $n$-vertex graph with minimum degree $$\delta(G)\geq\left(1-{3\over 3r-1}+\varepsilon\right)n,$$ either $G$ contains $H$, or we can delete $f(n,H)\leq Cn^{2-{1\over t}}$ edges from $G$ to obtain an $r$-partite graph. Further, we are able to determine the correct order of magnitude of $f(n,H)$ in terms of the Zarankiewicz extremal function.


Sign in / Sign up

Export Citation Format

Share Document