scholarly journals Prediction of Airfoil Stall Based on a Modified k−v2¯−ω Turbulence Model

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.

Author(s):  
Pamela A. McDowell ◽  
William D. York ◽  
D. Keith Walters ◽  
James H. Leylek

A newly developed unsteady turbulence model was used to predict heat transfer in a turbulated passage typical of turbine airfoil cooling applications. Comparison of fullyconverged computational solutions to experimental measurements reveal that accurate prediction of heat transfer coefficient requires the effects of local small-scale unsteadiness to be captured. Validation was accomplished through comparison of the time- and area-averaged Nusselt number on the passage wall between adjacent ribs with experimental data from the open literature. The straight channel had a square cross-sectional area with multiple rows of staggered and rounded-edge ribs on opposite walls that were orthogonal to the flow. Simulations were run for Reynolds numbers of 5500, 16500, and 25000. Computational solutions were obtained on a multi-block, multi-topology, unstructured, and adaptive grid, using a pressure-correction based, fully-implicit Navier-Stokes solver. The computational results include two-dimensional (2-D) and three-dimensional (3-D) steady and unsteady simulations with viscous sublayers resolved (y+ ≤ 1) on all the walls in every case. Turbulence closure was obtained using a new turbulence model developed in-house for the unsteady simulations, and a realizable k-ε turbulence model was used for the steady simulations. The results obtained from the unsteady simulations show greatly improved agreement with the experimental data, especially at realistically high Reynolds numbers. The key 3-D physics mechanisms responsible for the successful outcome include: (1) shear layer roll-up over the turbulators; (2) recirculation zones both upstream and downstream of the rib faces; and (3) reattachment regions between each rib pair. Results from the unsteady case are superior to those of the steady because they capture the aforementioned mechanisms, and therefore more accurately predict the heat transfer.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Enrico G. A. Antonini ◽  
David A. Romero ◽  
Cristina H. Amon

Computational fluid dynamics (CFD) simulations of wind turbine wakes are strongly influenced by the choice of the turbulence model used to close the Reynolds-averaged Navier-Stokes (RANS) equations. A wrong choice can lead to incorrect predictions of the velocity field characterizing the wind turbine wake and, consequently, to an incorrect power estimation for wind turbines operating downstream. This study aims to investigate the influence of different turbulence models, namely the k–ε, k–ω, SSTk–ω, and Reynolds stress models (RSM), on the results of CFD wind turbine simulations. Their influence was evaluated by comparing the CFD results with the publicly available experimental measurements of the velocity field and turbulence quantities from the Sexbierum and Nibe wind farms. Consistent turbulence model constants were proposed for atmospheric boundary layer (ABL) and wake flows according to previous literature and appropriate experimental observations, and modifications of the derived turbulence model constants were also investigated in order to improve agreement with experimental data. The results showed that the simulations using the k–ε and k–ω turbulence models consistently overestimated the velocity and turbulence quantities in the wind turbine wakes, whereas the simulations using the shear-stress transport (SST) k–ω and RSMs could accurately match the experimental data. Results also showed that the predictions from the k–ε and k–ω turbulence models could be improved by using the modified set of turbulence coefficients.


Author(s):  
Guilherme Vaz ◽  
Christophe Mabilat ◽  
Remmelt van der Wal ◽  
Paul Gallagher

The objective of this paper is to investigate several numerical and modelling features that the CFD community is currently using to compute the flow around a fixed smooth circular cylinder. Two high Reynolds numbers, 9 × 104 and 5 × 105, are chosen which are in the so called drag-crisis region. Using a viscous flow solver, these features are assessed in terms of quality by comparing the numerical results with experimental data. The study involves grid sensitivity, time step sensitivity, the use of different turbulence models, three-dimensional effects, and a RANS/DES (Reynolds Averaged Navier Stokes, Detached Eddy Simulation) comparison. The resulting drag forces and Strouhal numbers are compared with experimental data of different sources. Major flow features such as velocity and vorticity fields are presented. One of the main conclusions of the present study is that all models predict forces which are far from the experimental values, particularly for the higher Reynolds numbers in the drag-crisis region. Three-dimensional and unsteadiness effects are present, but are only fully captured by sophisticated turbulence models or by DES. DES seems to be the key to better solve the flow problem and obtain better agreement with experimental data. However, its considerable computational demands still do not allow to use it for engineering design purposes.


Author(s):  
Cristian Tibabisco ◽  
Salvador Vargas-Díaz ◽  
Samir A. Salamah

Abstract Impingement jets are used in different cooling applications where it is required to remove large amounts of heat. Heat transfer in the stagnation point for a single jet impinging on an isothermal plate is investigated with four turbulence models. Two models are RANS (Reynolds Average Navier-Stokes): Transition SST and Transition κ–κl–ω. The other two models are URANS (Unsteady Reynolds Average Navier-Stokes): SAS and DES-SST. This paper explores the best turbulence model for thermal design and cooling purposes. Results are validated with experimental data reported by Gardon & Akfirat. These four turbulence models are available in the commercial CFD software package ANSYS FLUENT 18.1. Special attention is paid to the heat transfer in the impingement region through evaluation of Nusselt number in the stagnation point. Different dimensionless nozzle-to-plate distances are considered in this work (z/b = 14 to z/b = 40), and two different Reynolds numbers are used Re = 11,000 y Re = 22,000. Three turbulence models are within reasonable accuracy (10%) of the experimental data, but some turbulence models have problems with convergence and grid independence, especially the URANS models. Based on these results, the best turbulence model for applications in heating and cooling systems where impingement heat transfer is critical is the Transition κ–κl–ω.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


Author(s):  
Jeffrey D. Ferguson ◽  
Dibbon K. Walters ◽  
James H. Leylek

For the first time in the open literature, code validation quality data and a well-tested, highly reliable computational methodology are employed to isolate the true performance of seven turbulence treatments in discrete jet film cooling. The present research examines both computational and high quality experimental data for two length-to-diameter ratios of a row of streamwise injected, cylindrical film holes. These two cases are used to document the performance of the following turbulence treatments: 1) standard k-ε model with generalized wall functions; 2) standard k-ε model with non-equilibrium wall functions: 3) Renormalization Group k-ε (RNG) model with generalized wall functions; 4) RNG model with non-equilibrium wall functions: 51 standard k-ε model with two-layer turbulence wall treatment; 6) Reynolds Stress Model (RSM) with generalized wall functions; and 7) RSM with non-equilibrium wall functions. Overall, the standard k-ε turbulence model with the two-layer near-wall treatment, which resolves the viscous sublayer, produces results that are more consistent with experimental data.


Volume 4 ◽  
2004 ◽  
Author(s):  
Branislav Basara ◽  
Ales Alajbegovic ◽  
Decan Beader

The paper presents calculations of flow in a mixing vessel stirred by a six-blade Rushton impeller. Mathematical model used in computations is based on the ensemble averaged conservation equations. An efficient finite-volume method based on unstructured grids with rotating sliding parts composed of arbitrary polyhedral elements is used together with various turbulence models. Besides the standard k-ε model which served as a reference, k-ε-v2 model (Durbin, 1995) and the recently proposed hybrid EVM/RSM turbulence model (Basara & Jakirlic, 2003) were used in the calculations. The main aim of the paper is to investigate if more advanced turbulence models are needed for this type of CFD applications. The results are compared with the available experimental data.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 404
Author(s):  
Charles Patrick Bounds ◽  
Sudhan Rajasekar ◽  
Mesbah Uddin

This paper presents a study on the flow dynamics involving vehicle interactions. In order to do so, this study first explores aerodynamic prediction capabilities of popular turbulence models used in computational fluid dynamics simulations involving tandem objects and thus, ultimately presents a framework for CFD simulations of ground vehicle platooning using a realistic vehicle model, DrivAer. Considering the availability of experimental data, the simulation methodology is first developed using a tandem arrangement of surface-mounted cubes which requires an understanding on the role of turbulence models and the impacts of the associated turbulence model closure coefficients on the prediction veracity. It was observed that the prediction accuracy of the SST k−ω turbulence model can be significantly improved through the use of a combination of modified values for the closure coefficients. Additionally, the initial validation studies reveal the inability of the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach to resolve the far wake, and its frailty in simulating tandem body interactions. The Improved Delayed Detached Eddy Simulations (IDDES) approach can resolve the wakes with a reasonable accuracy. The validated simulation methodology is then applied to the fastback DrivAer model at different longitudinal spacing. The results show that, as the longitudinal spacing is reduced, the trailing car’s drag is increased while the leading car’s drag is decreased which supports prior explanations of vortex impingement as the reason for drag changes. Additionally, unlike the case of platooning involving Ahmed bodies, the trailing model drag does not return to an isolated state value at a two car-length separation. However, the impact of the resolution of the far wake of a detailed DrivAer model, and its implication on the CFD characterization of vehicle interaction aerodynamics need further investigations.


Sign in / Sign up

Export Citation Format

Share Document