plastid genome evolution
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Chen ◽  
Li-Na Sha ◽  
Yi-Ling Wang ◽  
Ling-Juan Yin ◽  
Yue Zhang ◽  
...  

To investigate the pattern of chloroplast genome variation in Triticeae, we comprehensively analyzed the indels in protein-coding genes and intergenic sequence, gene loss/pseudonization, intron variation, expansion/contraction in inverted repeat regions, and the relationship between sequence characteristics and chloroplast genome size in 34 monogenomic Triticeae plants. Ancestral genome reconstruction suggests that major length variations occurred in four-stem branches of monogenomic Triticeae followed by independent changes in each genus. It was shown that the chloroplast genome sizes of monogenomic Triticeae were highly variable. The chloroplast genome of Pseudoroegneria, Dasypyrum, Lophopyrum, Thinopyrum, Eremopyrum, Agropyron, Australopyrum, and Henradia in Triticeae had evolved toward size reduction largely because of pseudogenes elimination events and length deletion fragments in intergenic. The Aegilops/Triticum complex, Taeniatherum, Secale, Crithopsis, Herteranthelium, and Hordeum in Triticeae had a larger chloroplast genome size. The large size variation in major lineages and their subclades are most likely consequences of adaptive processes since these variations were significantly correlated with divergence time and historical climatic changes. We also found that several intergenic regions, such as petN–trnC and psbE–petL containing unique genetic information, which can be used as important tools to identify the maternal relationship among Triticeae species. Our results contribute to the novel knowledge of plastid genome evolution in Triticeae.


2021 ◽  
Author(s):  
Chao Liu ◽  
Huanhuan Chen ◽  
Lizhou Tang ◽  
Phyo Kay Khine ◽  
Lihong Han ◽  
...  

Author(s):  
Amanda de Santana Lopes ◽  
Túlio Gomes Pacheco ◽  
Odyone Nascimento da Silva ◽  
Leila do Nascimento Vieira ◽  
Miguel Pedro Guerra ◽  
...  

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Kacper Maciszewski ◽  
Anna Karnkowska

Several eukaryotic lineages gained the ability of photosynthesis by acquiring plastids in the events of primary endosymbiosis with cyanobacteria, or secondary endosymbiosis with plastid-bearing eukaryotes. Plastids possess genomes (ptDNA) with genetic contents considerably reduced as a result of gene losses and transfers to the host’s nucleus. Still, ptDNA encodes components of various metabolic processes, including photosynthesis. Plastid genomes usually retain quadripartite structure with two rDNA-bearing inverted repeats, but the reason for its conservation, and the consequences of its decline, have not been fully understood. As the model group to study plastid genome evolution, we chose euglenids (Euglenophyta), whose ancestor acquired the secondary plastid by endosymbiosis with a green alga. The organization of ptDNA in this lineage is rather diverse: we have shown that loss of one repeat occurred at least three times, while some species in the genus Euglena possess tandemly repeated rDNA copies. The ptDNA of euglenids is also intron-rich, but we did not confirm the previously proposed strong correlation between the prevalence of introns and quantity of maturases. Although euglenophytes are predominantly photosynthetic, a few of them lost their photosynthetic capabilities independently. Thus far, only Euglena longa has been shown to possess vestigial plastids with reduced genome; we observed that another strain lost its plastid genome completely. Currently, we are investigating the loss and retention of metabolic functions in the plastids of other non-photosynthetic euglenophytes. This, along with investigation of ptDNA structure, will bring new insights into the evolutionary processes shaping the diversity of eukaryotic plastids.


2020 ◽  
Vol 12 (6) ◽  
pp. 867-870 ◽  
Author(s):  
Zhang-Hai Li ◽  
Yan Jiang ◽  
Xiao Ma ◽  
Jian-Wu Li ◽  
Jun-Bo Yang ◽  
...  

Abstract Calypsoinae is a small subtribe in Orchidaceae (Epidendroideae) characterized by diverse trophic strategies and morphological characters. Calypsoinae includes 13 genera, four of which are leafless and mycoheterotrophic. Mycoheterotrophic species in the leafless genus Corallorhiza are well suited to studies of plastome evolution. However, the lack of plastome sequences for other genera in Calypsoinae limits the scope of comparative and phylogenetic analyses, in particular our understanding of plastome evolution. To understand plastid genome evolution in Calypsoinae, we newly sequenced the plastomes of 12 species in the subtribe, including representatives of three mycoheterotrophic genera as well as five autotrophic genera. We detected two parallel photosynthetic losses in Corallorhiza. Evolutionary analyses indicated that the transition to obligate mycoheterotrophy leads to the relaxation of selection in a highly gene-specific pattern.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7830 ◽  
Author(s):  
Eugeny V. Gruzdev ◽  
Vitaly V. Kadnikov ◽  
Alexey V. Beletsky ◽  
Andrey V. Mardanov ◽  
Nikolai V. Ravin

Background Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. Methods The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. Results The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes among the parasitic Orobanchaceae. All genes related to photosynthesis, including the ATP synthase genes, had been lost, whereas most housekeeping genes remain intact. The plastome contains two divergent, but probably intact clpP genes. Intron loss had occurred in some protein-coding and tRNA genes. Phylogenetic analysis yielded a fully resolved tree for the Orobanchaceae, with Diphelypaea being a sister group to Orobanche sect. Orobanche.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218743 ◽  
Author(s):  
Dong-Pil Jin ◽  
In-Su Choi ◽  
Byoung-Hee Choi

2018 ◽  
Vol 10 (7) ◽  
pp. 1657-1662 ◽  
Author(s):  
Craig F Barrett ◽  
Aaron H Kennedy

Abstract Heterotrophic plants provide evolutionarily independent, natural experiments in the genomic consequences of radically altered nutritional regimes. Here, we have sequenced and annotated the plastid genome of the endangered mycoheterotrophic orchid Hexalectris warnockii. This orchid bears a plastid genome that is ∼80% the total length of the leafy, photosynthetic Phalaenopsis, and contains just over half the number of putatively functional genes of the latter. The plastid genome of H. warnockii bears pseudogenes and has experienced losses of genes encoding proteins directly (e.g., psa/psb, rbcL) and indirectly involved in photosynthesis (atp genes), suggesting it has progressed beyond the initial stages of plastome degradation, based on previous models of plastid genome evolution. Several dispersed and tandem repeats were detected, that are potentially useful as conservation genetic markers. In addition, a 29-kb inversion and a significant contraction of the inverted repeat boundaries are observed in this plastome. The Hexalectris warnockii plastid genome adds to a growing body of data useful in refining evolutionary models in parasites, and provides a resource for conservation studies in these endangered orchids.


Sign in / Sign up

Export Citation Format

Share Document