auxiliary signal
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jinrong Hu ◽  
Jie He ◽  
Ziyang Liu ◽  
Hao Zhang ◽  
Changjian Zhang ◽  
...  

Author(s):  
Hongsheng Chen ◽  
Guoliang Chen ◽  
Kai Chen ◽  
Jing Lu

AbstractThe acoustic echo cannot be entirely removed by linear adaptive filters due to the nonlinear relationship between the echo and the far-end signal. Usually, a post-processing module is required to further suppress the echo. In this paper, we propose a residual echo suppression method based on the modification of dual-path recurrent neural network (DPRNN) to improve the quality of speech communication. Both the residual signal and the auxiliary signal, the far-end signal or the output of the adaptive filter, obtained from the linear acoustic echo cancelation are adopted to form a dual-stream for the DPRNN. We validate the efficacy of the proposed method in the notoriously difficult double-talk situations and discuss the impact of different auxiliary signals on performance. We also compare the performance of the time domain and the time-frequency domain processing. Furthermore, we propose an efficient and applicable way to deploy our method to off-the-shelf loudspeakers by fine-tuning the pre-trained model with little recorded-echo data.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4502 ◽  
Author(s):  
Seungmin Lee ◽  
Yoosoo Jeong ◽  
Daejin Park ◽  
Byoung-Ju Yun ◽  
Kil Park

Electrocardiogram signal analysis is based on detecting a fiducial point consisting of the onset, offset, and peak of each waveform. The accurate diagnosis of arrhythmias depends on the accuracy of fiducial point detection. Detecting the onset and offset fiducial points is ambiguous because the feature values are similar to those of the surrounding sample. To improve the accuracy of this paper’s fiducial point detection, the signal is represented by a small number of vertices through a curvature-based vertex selection technique using polygonal approximation. The proposed method minimizes the number of candidate samples for fiducial point detection and emphasizes these sample’s feature values to enable reliable detection. It is also sensitive to the morphological changes of various QRS complexes by generating an accumulated signal of the amplitude change rate between vertices as an auxiliary signal. To verify the superiority of the proposed algorithm, error distribution is measured through comparison with the QT-DB annotation provided by Physionet. The mean and standard deviation of the onset and the offset were stable as − 4.02 ± 7.99 ms and − 5.45 ± 8.04 ms, respectively. The results show that proposed method using small number of vertices is acceptable in practical applications. We also confirmed that the proposed method is effective through the clustering of the QRS complex. Experiments on the arrhythmia data of MIT-BIH ADB confirmed reliable fiducial point detection results for various types of QRS complexes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmad Hasasneh ◽  
Nikolas Kampel ◽  
Praveen Sripad ◽  
N. Jon Shah ◽  
Jürgen Dammers

We propose an artifact classification scheme based on a combined deep and convolutional neural network (DCNN) model, to automatically identify cardiac and ocular artifacts from neuromagnetic data, without the need for additional electrocardiogram (ECG) and electrooculogram (EOG) recordings. From independent components, the model uses both the spatial and temporal information of the decomposed magnetoencephalography (MEG) data. In total, 7122 samples were used after data augmentation, in which task and nontask related MEG recordings from 48 subjects served as the database for this study. Artifact rejection was applied using the combined model, which achieved a sensitivity and specificity of 91.8% and 97.4%, respectively. The overall accuracy of the model was validated using a cross-validation test and revealed a median accuracy of 94.4%, indicating high reliability of the DCNN-based artifact removal in task and nontask related MEG experiments. The major advantages of the proposed method are as follows: (1) it is a fully automated and user independent workflow of artifact classification in MEG data; (2) once the model is trained there is no need for auxiliary signal recordings; (3) the flexibility in the model design and training allows for various modalities (MEG/EEG) and various sensor types.


Sign in / Sign up

Export Citation Format

Share Document