mdckii cells
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 1)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1989
Author(s):  
Ju-Hee Oh ◽  
Dokeun Kim ◽  
Haejun Lee ◽  
Gyeonghee Kim ◽  
Taehoon Park ◽  
...  

Breast cancer resistance protein (BCRP) mediates pharmacokinetic drug interactions. This study evaluated the potential of quercetin to inhibit and induce BCRP in vitro and in vivo. The inhibition of BCRP was investigated for quercetin and its metabolites using BCRP/mBcrp1-overexpressing MDCKII cells by flow cytometry. The induction of BCRP was investigated in LS174T cells using quantitative PCR. The expression of rat BCRP in rat small intestine, liver, and kidney was also measured after multiple administrations of quercetin in rats (50, 100, and 250 mg/kg, seven days). The in vivo pharmacokinetic changes of sulfasalazine following single or multiple administration of quercetin in rats and beagles were investigated. Although the induction effect of quercetin on BCRP was observed in vitro, the in vivo expression of rat BCRP was not changed by multiple quercetin administrations. Oral administration of quercetin did not affect the plasma concentration or pharmacokinetic parameters of sulfasalazine, regardless of dose and dosing period in either rats or beagles. In addition, the inhibitory effect of quercetin metabolites on BCRP/mBcrp1 was not observed. These results suggest that the in vivo drug interaction caused by quercetin via BCRP was negligible, and it may be related to the metabolic inactivation of quercetin for the inhibition of BCRP.


2021 ◽  
Vol 24 ◽  
pp. 227-236
Author(s):  
Toshihiro Sato ◽  
Masamitsu Maekawa ◽  
Nariyasu Mano ◽  
Takaaki Abe ◽  
Hiroaki Yamaguchi

Purpose. Remdesivir and its active metabolite are predominantly eliminated via renal route; however, information regarding renal uptake transporters is limited. In the present study, the interaction of remdesivir and its nucleoside analog GS-441524 with OATP4C1 was evaluated to provide the detailed information about its renal handling. Methods. We used HK-2 cells, a proximal tubular cell line derived from normal kidney, to confirm the transport of remdesivir and GS-441524. To assess the involvement of OATP4C1 in handling remdesivir and GS-441524, the uptake study of remdesivir and GS-441524 was performed by using OATP4C1-overexpressing Madin-Darby canine kidney II (MDCKII) cells. Moreover, we also evaluated the IC50 and Ki value of remdesivir. Results. The time-dependent remdesivir uptake in HK-2 cells was observed. The results of inhibition study using OATs and OCT2 inhibitors and OATP4C1 knockdown suggested the involvement of renal drug transporter OATP4C1. Remdesivir was taken up by OATP4C1/MDCKII cells. OATP4C1-mediated uptake of remdesivir increased linearly up to 10 min and reached a steady state at 30 min. Remdesivir inhibited OATP4C1-mediated transport in a concentration-dependent manner with the IC50 and apparent Ki values of 42 ± 7.8 μM and 37 ± 6.9 μM, respectively. Conclusions. We have provided novel information about renal handling of remdesivir. Furthermore, we evaluated the potential drug interaction via OATP4C1 by calculating the Ki value of remdesivir. OATP4C1 may play a pivotal role in remdesivir therapy for COVID-19, particularly in patients with kidney injury.  


2020 ◽  
Vol 295 (50) ◽  
pp. 16998-17008
Author(s):  
Takahiro Yamashiro ◽  
Tomoya Yasujima ◽  
Hamid M. Said ◽  
Hiroaki Yuasa

SLC19A2 and SLC19A3, also known as thiamine transporters (THTR) 1 and 2, respectively, transport the positively charged thiamine (vitamin B1) into cells to enable its efficient utilization. SLC19A2 and SLC19A3 are also known to transport structurally unrelated cationic drugs, such as metformin, but whether this charge selectivity extends to other molecules, such as pyridoxine (vitamin B6), is unknown. We tested this possibility using Madin-Darby canine kidney II (MDCKII) cells and human embryonic kidney 293 (HEK293) cells for transfection experiments, and also using Caco-2 cells as human intestinal epithelial model cells. The stable expression of SLC19A2 and SLC19A3 in MDCKII cells (as well as their transient expression in HEK293 cells) led to a significant induction in pyridoxine uptake at pH 5.5 compared with control cells. The induced uptake was pH-dependent, favoring acidic conditions over neutral to basic conditions, and protonophore-sensitive. It was saturable as a function of pyridoxine concentration, with an apparent Km of 37.8 and 18.5 μm, for SLC19A2 and SLC19A3, respectively, and inhibited by the pyridoxine analogs pyridoxal and pyridoxamine as well as thiamine. We also found that silencing the endogenous SLC19A3, but not SLC19A2, of Caco-2 cells with gene-specific siRNAs lead to a significant reduction in carrier-mediated pyridoxine uptake. These results show that SLC19A2 and SLC19A3 are capable of recognizing/transporting pyridoxine, favoring acidic conditions for operation, and suggest a possible role for these transporters in pyridoxine transport mainly in tissues with an acidic environment like the small intestine, which has an acidic surface microclimate.


2020 ◽  
Vol 21 (14) ◽  
pp. 5140
Author(s):  
Wolfgang H. Ziegler ◽  
Birga Soetje ◽  
Lisa P. Marten ◽  
Jana Wiese ◽  
Mithila Burute ◽  
...  

Mutations of the Pkhd1 gene cause autosomal recessive polycystic kidney disease (ARPKD). Pkhd1 encodes fibrocystin/polyductin (FPC), a ciliary type I membrane protein of largely unknown function, suggested to affect adhesion signaling of cells. Contributions of epithelial cell adhesion and contractility to the disease process are elusive. Here, we link loss of FPC to defective epithelial morphogenesis in 3D cell culture and altered cell contact formation. We study Pkhd1-silenced Madin-Darby Canine Kidney II (MDCKII) cells using an epithelial morphogenesis assay based on micropatterned glass coverslips. The assay allows analysis of cell adhesion, polarity and lumen formation of epithelial spheroids. Pkhd1 silencing critically affects the initial phase of the morphogenesis assay, leading to a reduction of correctly polarized spheroids by two thirds. Defects are characterized by altered cell adhesion and centrosome positioning of FPC-deficient cells in their 1-/2-cell stages. When myosin II inhibitor is applied to reduce cellular tension during the critical early phase of the assay, Pkhd1 silencing no longer inhibits formation of correctly polarized epithelia. We propose that altered sensing and cell interaction of FPC-deficient epithelial cells promote progressive epithelial defects in ARPKD.


Author(s):  
Stephen J. DeCamp ◽  
Victor M.K. Tsuda ◽  
Jacopo Ferruzzi ◽  
Stephan A. Koehler ◽  
John T. Giblin ◽  
...  

AbstractIn development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.Two sentence summaryAt the leading front of an advancing confluent epithelial layer, each cell tends to migrate, elongate, and pull on its substrate far more than do cells many ranks behind, but little is known about underlying metabolic events. Using the advancing monolayer of MDCKII cells as a model of wound healing, here we show at single cell resolution that physical changes associated with epithelial layer unjamming are accompanied by an overall shift toward glycolytic metabolism.


2018 ◽  
Vol 33 (1) ◽  
pp. S90-S91
Author(s):  
Yoshihisa Mimura ◽  
Tomoya Yasujima ◽  
Kinya Ohta ◽  
Katsuhisa Inoue ◽  
Hiroaki Yuasa

Sign in / Sign up

Export Citation Format

Share Document