thyroid dyshormonogenesis
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Maricel F. Molina ◽  
Patricia Papendieck ◽  
Gabriela Sobrero ◽  
Viviana A. Balbi ◽  
Fiorella S. Belforte ◽  
...  

Abstract Purpose Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the preventable causes of both cognitive and motor deficits. We present a genetic and bioinformatics investigation of rational clinical design in 16 Argentine patients suspected of CH due to thyroid dyshormonogenesis (TDH). Methods Next-Generation Sequencing approach was used to identify variants in Thyroid Peroxidase (TPO) and Dual Oxidase 2 (DUOX2) genes. A custom panel targeting 7 genes associated with TDH [(TPO, Iodothyrosine Deiodinase I (IYD), Solute Carrier Family 26 Member 4 (SLC26A4), Thyroglobulin (TG), (DUOX2), Dual Oxidase Maturation Factor 2 (DUOXA2), Solute Carrier Family 5 Member 5 (SLC5A5)] and 4 associated with thyroid dysembryogenesis [PAX8, FOXE1, NKX2-1, Thyroid Stimulating Hormone Receptor (TSHR)] has been designed. Additionally, bioinformatic analysis and structural modeling were carried out to predict the disease-causing potential variants. Results Five novel variants have been identified, two in TPO: c.2749-2A>C and c.2752_2753delAG, [p.Ser918Cysfs*62] and three variants in DUOX2 gene: c.425C>G [p.Pro142Arg]; c.790delC [p.Leu264Cysfs*57] and c.2695delC [p.Gln899Serfs*21]. Seventeen identified TPO, DUOX2 and IYD variants were previously described. We identified potentially pahogenic bi-allelic variants in TPO and DUOX2 in 8 and 2 patients, respectively. We also detected a potentially pathogenic mono-allelic variant in TPO and DUOX2 in 4 and 1 patients respectively. Only two patients were heterozygous for digenic variants in TPO/IYD and in TPO/DUOX2 genes. Conclusions 22 variants have been identified associated with TDH. All described novel mutations occur in domains important for protein structure and function, predicting the TDH phenotype.


Endocrinology ◽  
2021 ◽  
Author(s):  
Feng Sun ◽  
Ya Fang ◽  
Man-Man Zhang ◽  
Rui-Jia Zhang ◽  
Feng-Yao Wu ◽  
...  

Abstract Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid dyshormonogenesis is the main cause of congenital hypothyroidism in Chinese CH patients and DUOX2 is the most frequent mutated gene involved in H2O2 production. In human, the primary sources for H2O2 production are DUOX1 and DUOX2, while in zebrafish, there is only a single orthologue for DUOX1 and DUOX2. In this study, duox mutant zebrafish were generated through knockdown duox by morpholino or knockout duox by CRISPR Cas9. The associated phenotypes were investigated and rescued by thyroxine (T4) treatment. Mutant zebrafish displayed hypothyroid phenotypes including growth retardation and goiter and infertility. Homozygous mutants in adults also displayed extra-thyroidal abnormal phenotypes including lacking barbels, pigmentation defects, erythema in the opercular region, ragged fins and delayed scales. All these abnormal phenotypes can be rescued by 10 nM T4 treatment. Strikingly, the fertility of zebrafish was dependent on thyroid hormone, T4 treatment should be continued and cannot be stopped over two weeks in hypothyroid zebrafish in order to achieve fertility. Thyroid hormones played a role in the developing and maturing of reproductive cells. Our work indicated that duox mutant zebrafish may provide a model for human congenital hypothyroidism.


Author(s):  
Wajdi Safi ◽  
Kacem Faten Hadj ◽  
Hana Charfi ◽  
Feki Mouna Mnif ◽  
Mohamed Abid ◽  
...  

2020 ◽  
pp. mcp.RA120.002168 ◽  
Author(s):  
Madison T Wright ◽  
Logan Kouba ◽  
Lars Plate

Thyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for T3 and T4 hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism (CH). Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification–mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several CH-variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and engagement by targeting factors for ER-associated degradation (ERAD). Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for one Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.


2020 ◽  
Vol 9 (11) ◽  
pp. 1121-1134
Author(s):  
Kinnaree Sorapipatcharoen ◽  
Thipwimol Tim-Aroon ◽  
Pat Mahachoklertwattana ◽  
Wasun Chantratita ◽  
Nareenart Iemwimangsa ◽  
...  

Objective To identify the genetic etiologies of congenital primary hypothyroidism (CH) in Thai patients. Design and methods CH patients were enrolled. Clinical characteristics including age, signs and symptoms of CH, pedigree, family history, screened thyroid-stimulating hormone results, thyroid function tests, thyroid imaging, clinical course and treatment of CH were collected. Clinical exome sequencing by next-generation sequencing was performed. In-house gene list which covered 62 potential candidate genes related to CH and thyroid disorders was developed for targeted sequencing. Sanger sequencing was performed to validate the candidate variants. Thyroid function tests were determined in the heterozygous parents who carried the same DUOX2 or DUOXA2 variants as their offsprings. Results There were 118 patients (63 males) included. Mean (SD) age at enrollment was 12.4 (7.9) years. Forty-five of 118 patients (38%) had disease-causing variants. Of 45 variants, 7 genes were involved (DUOX2, DUOXA2, TG, TPO, SLC5A5, PAX8 and TSHR). DUOX2, a gene causing thyroid dyshormonogenesis, was the most common defective gene (25/45, 56%). The most common DUOX2 variant found in this study was c.1588A>T. TG and TPO variants were less common. Fourteen novel variants were found. Thyroid function tests of most parents with heterozygous state of DUOX2 and DUOXA2 variants were normal. Conclusions DUOX2 variants were most common among Thai CH patients, while TG and TPO variants were less common. The c.1588A>T in DUOX2 gene was highly frequent in this population.


2020 ◽  
Vol 106 (1) ◽  
pp. e152-e170
Author(s):  
Núria Camats ◽  
Noelia Baz-Redón ◽  
Mónica Fernández-Cancio ◽  
María Clemente ◽  
Ariadna Campos-Martorell ◽  
...  

Abstract Purpose Thyroid dyshormonogenesis is a heterogeneous group of hereditary diseases produced by a total/partial blockage of the biochemical processes of thyroid-hormone synthesis and secretion. Paired box 8 (PAX8) is essential for thyroid morphogenesis and thyroid hormone synthesis. We aimed to identify PAX8 variants in patients with thyroid dyshormonogenesis and to analyze them with in vitro functional studies. Patients and Methods Nine pediatric patients with a eutopic thyroid gland were analyzed by the Catalan screening program for congenital hypothyroidism. Scintigraphies showed absent, low, or normal uptake. Only one patient had a hypoplastic gland. On reevaluation, perchlorate discharge test was negative or compatible with partial iodine-organization deficit. After evaluation, 8 patients showed permanent mild or severe hypothyroidism. Massive-sequencing techniques were used to detect variants in congenital hypothyroidism-related genes. In vitro functional studies were based on transactivating activity of mutant PAX8 on a TG-gene promoter and analyzed by a dual-luciferase assays. Results We identified 7 heterozygous PAX8 exonic variants and 1 homozygous PAX8 splicing variant in 9 patients with variable phenotypes of thyroid dyshormonogenesis. Five were novel and 5 variants showed a statistically significant impaired transcriptional activity of TG promoter: 51% to 78% vs the wild type. Conclusions Nine patients presented with PAX8 candidate variants. All presented with a eutopic thyroid gland and 7 had deleterious variants. The phenotype of affected patients varies considerably, even within the same family; but, all except the homozygous patient presented with a normal eutopic thyroid gland and thyroid dyshormonogenesis. PAX8 functional studies have shown that 6 PAX8 variants are deleterious. Our studies have proven effective in evaluating these variants.


Author(s):  
Madison T. Wright ◽  
Logan Kouba ◽  
Lars Plate

ABSTRACTThyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for T3 and T4 hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism (CH). Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification–mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several CH-variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and routing towards ER-associated degradation components, yet variants are inefficiently degraded. Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for one Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document