reporter probe
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Thanyarat Chaibun ◽  
Patcharanin Thanasapburachot ◽  
Patutong Chatchawal ◽  
Su Yin Lee ◽  
Sirimanas Jiaranuchart ◽  
...  

Abstract Infection with high-risk human papillomavirus (HPV) is a major risk factor for oral and cervical cancers. In this study, we developed an electrochemical DNA biosensor for detection of HPV-16 and HPV-18, which are the 2 most prevalent genotypes for development of oral and cervical cancers. The assay involves the sandwich hybridization of the HPV target to silica-redox dye reporter probe and capture probe, followed by electrochemical detection. The sensor was found to be highly specific and sensitive, with detection limit of 22 fM for HPV-16 and 20 fM for HPV-18, between the range of 1 fM to 1 µM. Evaluation with oral and cervical samples showed that the biosensor result was consistent with the nested PCR /gel electrophoresis detection. The biosensor assay could be completed within 90 minutes. Due to its simplicity, rapidity and high sensitivity, this biosensor could be used as an alternative method for HPV detection in clinical laboratories. [151 words]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weronika Wargocka-Matuszewska ◽  
Katarzyna Fiedorowicz ◽  
Anna Rugowska ◽  
Karolina Bednarowicz ◽  
Agnieszka Zimna ◽  
...  

AbstractPreclinical and clinical studies have shown that stem cells can promote the regeneration of damaged tissues, but therapeutic protocols need better quality control to confirm the location and number of transplanted cells. This study describes in vivo imaging while assessing reporter gene expression by its binding to a radiolabelled molecule to the respective receptor expressed in target cells. Five mice underwent human skeletal muscle-derived stem/progenitor cell (huSkMDS/PC EF1-HSV-TK) intracardial transplantation after induction of myocardial infarction (MI). The metabolic parameters of control and post-infarction stem progenitor cell-implanted mice were monitored using 2-deoxy-18F-fluorodeoxyglucose ([18F]-FDG) before and after double promotor/reporter probe imaging with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]-FHBG) using positron emission tomography (PET) combined with computed tomography (CT). Standardized uptake values (SUVs) were then calculated based on set regions of interest (ROIs). Experimental animals were euthanized after magnetic resonance imaging (MRI). Molecular [18F]-FHBG imaging of myogenic stem/progenitor cells in control and post-infarction mice confirmed the survival and proliferation of transplanted cells, as shown by an increased or stable signal from the PET apparatus throughout the 5 weeks of monitoring. huSkMDS/PC EF1-HSV-TK transplantation improved cardiac metabolic ([18F]-FDG with PET) and haemodynamic (MRI) parameters. In vivo PET/CT and MRI revealed that the precise use of a promotor/reporter probe incorporated into stem/progenitor cells may improve non-invasive monitoring of targeted cellular therapy in the cardiovascular system.


2021 ◽  
Author(s):  
Weronika Wargocka-Matuszewska ◽  
Katarzyna Fiedorowicz ◽  
Anna Rugowska ◽  
Karolina Bednarowicz ◽  
Agnieszka Zimna ◽  
...  

Abstract Preclinical and clinical studies have shown that stem cells can promote the regeneration of damaged tissues, but therapeutic protocols need better quality control to confirm the location and number of transplanted cells. This study describes in vivo imaging while assessing reporter gene expression by its binding to a radiolabelled molecule to the respective receptor expressed in target cells. Five mice underwent human skeletal-derived stem/progenitor cell (huSkMDS/PC EF1-HSV-TK) intracardial transplantation after induction of myocardial infarction (MI). The metabolic parameters of control and post-infarction stem progenitor cell-implanted mice were monitored using 2-deoxy-18F-fluorodeoxyglucose ([18F]-FDG) before and after double promotor/reporter probe imaging with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]-FHBG) using positron emission tomography (PET) combined with computed tomography (CT). Standardized uptake values (SUVs) were then calculated based on set regions of interest (ROIs). Experimental animals were euthanized after magnetic resonance imaging (MRI). Molecular [18F]-FHBG imaging of myogenic stem/progenitor cells in control and post-infarction mice confirmed the survival and proliferation of transplanted cells, as shown by an increased or stable signal from the PET apparatus throughout the 5 weeks of monitoring. huSkMDS/PC EF1-HSV-TK transplantation improved cardiac metabolic ([18F]-FDG with PET) and haemodynamic (MRI) parameters. In vivo PET/CT and MRI revealed that the precise use of a promotor/reporter probe incorporated into stem/progenitor cells may improve non-invasive monitoring of targeted cellular therapy in the cardiovascular system.


The Analyst ◽  
2021 ◽  
Author(s):  
Li Xu ◽  
Jiawei Qi ◽  
Yanli Wen ◽  
Wen Liang ◽  
Lele Wang ◽  
...  

A multiple reporter probe system (MRP) was applied to open the secondary structure and hybridize with a long RNA. Capability of quantification and structural analysis of long RNA was demonstrated. Excellent selectivity was achieved when analyzing extracted total RNA samples.


Author(s):  
Kenneth N. Hass ◽  
Mengdi Bao ◽  
Qian He ◽  
Myeongkee Park ◽  
Peiwu Qin ◽  
...  

ABSTRACTA fully Integrated Micropillar Polydimethylsiloxane Accurate CRISPR Detection (IMPACT) system is developed for viral DNA detection. This powerful system is patterned with high-aspect ratio micropillars to enhance reporter probe binding. After surface modification and probe immobilization, CRISPR Cas12a/crRNA complex is injected into the fully enclosed system. With the presence of double-stranded DNA target, the CRISPR enzyme is activated and non-specifically cleaves the ssDNA reporters initially immobilized on the micropillars. This collateral cleavage releases fluorescence dyes into the assay, and the intensity is linearly proportional to the target DNA concentration ranging from 0.1 to 10 nM. Importantly, this system does not rely on traditional dye-quencher labeled probe thus eliminating the fluorescence background presented in the assay. Furthermore, our one-step detection protocol is performed at isothermal conditions (37°C) without using complicated and time-consuming off-chip probe hybridization and denaturation. This miniaturized and fully packed IMPACT chip demonstrates rapid, sensitive, and simple nucleic acid detection and is an ideal candidate for the next generation molecular diagnostic platform for point-of-care (POC) applications, responding to emerging and deadly pathogen outbreaks.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Shu Zhang ◽  
Jian Huang ◽  
Jingrun Lu ◽  
Min Liu ◽  
Yan Li ◽  
...  

Background DNA methylation detection is indispensable for the diagnosis and prognosis of various diseases including malignancies. Hence, it is crucial to develop a simple, sensitive, and specific detection strategy. Methods A novel fluorescent biosensor was developed based on a simple dual signal amplification strategy using functional dendritic DNA nanostructure and signal-enriching polystyrene microbeads in combination with ligase detection reaction (LDR). Dendritic DNA self-assembled from Y-DNA and X-DNA through enzyme-free DNA catalysis of a hairpin structure, which was prevented from unwinding at high temperature by adding psoralen. Then dendritic DNA polymer labeled with fluorescent dye Cy5 was ligated with reporter probe into a conjugate. Avidin-labeled polystyrene microbeads were specifically bound to biotin-labeled capture probe, and hybridized with target sequence and dendritic DNA. LDR was triggered by adding Taq ligase. When methylated cytosine existed, the capture probe and reporter probe labeled with fluorescent dye perfectly matched the target sequence, forming a stable duplex to generate a fluorescence signal. However, after bisulfite treatment, unmethylated cytosine was converted into uracil, resulting in a single base mismatch. No fluorescence signal was detected due to the absence of duplex. Results The obtained dendritic DNA polymer had a large volume. This method was time-saving and low-cost. Under the optimal experimental conditions using avidin-labeled polystyrene microbeads, the fluorescence signal was amplified more obviously, and DNA methylation was quantified ultrasensitively and selectively. The detection range of this sensor was 10−15 to 10−7 M, and the limit of detection reached as low as 0.4 fM. The constructed biosensor was also successfully used to analyze actual samples. Conclusion This strategy has ultrasensitivity and high specificity for DNA methylation quantification, without requiring complex processes such as PCR and enzymatic digestion, which is thus of great value in tumor diagnosis and biomedical research.


2019 ◽  
Vol 11 (48) ◽  
pp. 6103-6110 ◽  
Author(s):  
Jing Liu ◽  
Qiongqiong Yu ◽  
Guangying Zhao ◽  
Wenchao Dou

In this article, a sensitive, visual and quantitative immunochromatographic assay (ICA) is described by using a novel Au@Pt-nanoparticle-decorated blue-silica-nanoparticle nanocomposite (Au@Pt/blue SiNPs) as a reporter probe.


2017 ◽  
Vol 9 (44) ◽  
pp. 38281-38287 ◽  
Author(s):  
Xue Yang ◽  
Yanli Wen ◽  
Lele Wang ◽  
Chaoqun Zhou ◽  
Qian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document