scholarly journals Study on Shear Failure and Crack Propagation Characteristics of Soil-Rock Mixture

2021 ◽  
Vol 8 (4) ◽  
pp. 153-158
Author(s):  
Min Zhang ◽  
Shaolong Zhang ◽  
Shiwei Shen ◽  
Weilong Zhang

Soil–rock mixture is a special geological material between homogeneous soil masses and fractured rock masses. In this study, the shear characteristics, movement and failure characteristics of particles and the evolution law of cracks were studied by direct shear tests and particle flow numerical simulations. The results show that the shear stress-shear displacement curves of the soil–rock mixture can be roughly classified into three stages: elastic stage, plastic stage and strain softening stage, and there was a "jump" phenomenon. The higher the rock content was, the more obvious the phenomenon. The shear strength and its indices of the soil–rock mixture did not increase with increasing rock content, but there was an "optimal rock content". According to the experimental and simulation results, particle breakage can be divided into three types: slight failure, partial failure and complete failure. The crack propagation characteristics can be divided into three stages, and the crack propagation depth increases with increasing shear displacement. It increases with increasing vertical stress and decreases with increasing block rock content.

2013 ◽  
Vol 454 ◽  
pp. 125-128
Author(s):  
Yuan Li ◽  
Zhen Li ◽  
Tie Jun Xu

In order to get brittle shear characteristics of rock material, acoustic emission accompanied with triaxial stress-strain test was applied to monitor the emergence and development of micro cracks. Theoretical analysis and data processing were conducted based on the theories of fracture mechanics and general rock mechanics, relations between the feature strength of three stages and the stress state were obtained, and a method was put forward for analyzing the brittle shear failure of rock material. The relationship of the Mohr-Coulomb strength theory, Griffith strength theory and Hoek-Brown criterion with the brittle-shear strength model were established. Strength analysis of mixed granite in Shuichang slope was carried out by the brittle shear failure model, and the theoretical value and experimental value has a good consistency.


Author(s):  
Hongjie Xu ◽  
Zezhong Fang ◽  
Shuxun Sang ◽  
Jingfen Yang ◽  
Huihu Liu ◽  
...  

The shear failure of surface methane capture borehole (SMCB) is the main cause of shortening life cycle of SMCB but lack of lithological analysis. In order to improve the stability of SMCB and improve efficient drainage period, it is of great significance to investigate the lithology performances for shear failure of SMCB. Based on the direct shear tests and geological method, the results shows that the shear displacement increases as the grain size decreases. Mechanical jump occurs at the lithological boundaries, which is mainly determined by the composition of rock specimens. The cohesion is the mainly possible reason for the step change of shear strength. Lithology with high quartz and low clay may effectively improve shear strength and failure resistance. Boreholes drilled into the weaker siltstone and mudstone sections may potentially experience preferential damage due to the larger shear displacement and shear strength. Protective measures at these sections may improve the stability of the borehole casing. The probing data where it was found that boreholes closure validated the prediction.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


Author(s):  
Philippe Davy ◽  
Caroline Darcel ◽  
Romain Le Goc ◽  
Diego Mas Ivars

Sign in / Sign up

Export Citation Format

Share Document