scholarly journals Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John M. O’Connor ◽  
Wilfried Jokat ◽  
Peter J. Michael ◽  
Mechita C. Schmidt-Aursch ◽  
Daniel P. Miggins ◽  
...  

AbstractDespite progress in understanding seafloor accretion at ultraslow spreading ridges, the ultimate driving force is still unknown. Here we use 40Ar/39Ar isotopic dating of mid-ocean ridge basalts recovered at variable distances from the axis of the Gakkel Ridge to provide new constraints on the spatial and temporal distribution of volcanic eruptions at various sections of an ultraslow spreading ridge. Our age data show that magmatic-dominated sections of the Gakkel Ridge spread at a steady rate of ~11.1 ± 0.9 mm/yr whereas amagmatic sections have a more widely distributed melt supply yielding ambiguous spreading rate information. These variations in spreading rate and crustal accretion correlate with locations of hotter thermochemical anomalies in the asthenosphere beneath the ridge. We conclude therefore that seafloor generation in ultra-slow spreading centres broadly reflects the distribution of thermochemical anomalies in the upper mantle.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


Geology ◽  
2020 ◽  
Author(s):  
Clément de Sagazan ◽  
Jean-Arthur Olive

The stabilizing effect of surface processes on strain localization, albeit predicted by several decades of geodynamic modeling, remains difficult to document in real tectonic settings. Here we assess whether intense sedimentation can explain the longevity of the normal faults bounding the Andaman Sea spreading center (ASSC). The structure of the ASSC is analogous to a slow-spreading mid-ocean ridge (MOR), with symmetric, evenly spaced axis-facing faults. The average spacing of faults with throws ≥100 m (8.8 km) is however large compared to unsedimented MORs of commensurate spreading rate, suggesting that sedimentation helps focus tectonic strain onto a smaller number of longer-lived faults. We test this idea by simulating a MOR with a specified fraction of magmatic plate separation (M), subjected to a sedimentation rate (s) ranging from 0 to 1 mm/yr. We find that for a given M ≥ 0.7, increasing s increases fault lifespan by ~50%, and the effect plateaus for s > 0.5 mm/yr. Sedimentation prolongs slip on active faults by leveling seafloor relief and raising the threshold for breaking new faults. The effect is more pronounced for faults with a slower throw rate, which is favored by a greater M. These results suggest that sedimentation-enhanced fault lifespan is a viable explanation for the large spacing of ASSC faults if magmatic input is sufficiently robust. By contrast, longer-lived faults that form under low M are not strongly influenced by sedimentation.


2021 ◽  
Author(s):  
Alexandra Yang Yang ◽  
Charles Langmuir ◽  
Yue Cai ◽  
Steven Goldstein ◽  
Peter Michael ◽  
...  

Abstract The plate tectonic cycle produces chemically distinct mid-ocean ridge basalts (MORB) and arc volcanics, with the latter enriched in fluid-mobile elements and depleted in Nb owing to fluxes from the subducted slab. Basalts from back-arc basins (BABB), with intermediate compositions, show that the subduction flux can escape the arc. Hence it is puzzling why arc signatures have rarely been recognized in MORB. Here we report the first MORB samples with distinct arc signatures, akin to BABB, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence. This influence can also be identified in Atlantic and Indian MORB with a “BABB filter”, but is nearly absent in Pacific MORB. This global distribution reflects the control of a “subduction shield” that has surrounded the Pacific Ocean for 180Myr. Statistics suggest that a flux equivalent to ~ 13% of output at arcs is incorporated into the convecting upper mantle.


2020 ◽  
Author(s):  
Valentin Basch ◽  
Camilla Sani ◽  
Alessio Sanfilippo ◽  
Yasuhiko Ohara ◽  
Jonathan E. Snow ◽  
...  

2019 ◽  
Vol 60 (6) ◽  
pp. 1135-1162 ◽  
Author(s):  
Fan Yang ◽  
Xiao-Long Huang ◽  
Yi-Gang Xu ◽  
Peng-Li He

Abstract Magmatic processes associated with oceanic crustal accretion at slow-spreading mid-oceanic ridges are less well understood compared with those at fast-spreading ridges. Zoned plagioclase in the basalts might record these magmatic processes as a result of the very slow intra-crystal diffusion of CaAl–NaSi. Plagioclase phenocrysts in plagioclase-phyric basalt from Hole U1433B of International Ocean Discovery Program (IODP) Expedition 349 in the South China Sea show complex zoning patterns (e.g. normal, reverse, oscillatory and patchy). These samples provide a rare opportunity to determine the magma dynamics associated with oceanic crustal accretion at slow-spreading ridges through time. Igneous lithological units in Hole U1433B consist of a series of massive lava flows at the bottom and a thick succession of small pillow lava flows at the top. Most of the plagioclase phenocrysts in the massive lava show core–rim zonation with high-An cores (An ∼85%; in mole fraction; Pl-A) in equilibrium with melts that are more primitive than their host. Some high-An cores of Pl-A phenocrysts contain melt inclusions and are depleted in La, Ce, Y and Ti, but enriched in Sr and Eu; this is interpreted as resulting from dissolution–crystallization processes during reaction of hot melt with pre-existing plagioclase cumulates. In the pillow lavas, most of the plagioclase phenocrysts show normal core–mantle–rim zonation (Pl-B) with An contents decreasing gradually from the core to the mantle to the rim, suggesting extensive magma mixing and differentiation. Reversely zoned plagioclases (Pl-C) are sparsely present throughout the basalts, but mostly occur in the lower part of the drill hole. The cores of euhedral Pl-C phenocrysts are compositionally comparable with the mantles of Pl-B phenocrysts, suggesting that the evolved magma was recharged by a relatively primitive magma. Melt inclusion-bearing Pl-A phenocrysts occur mainly in the massive lava, but rarely in the pillow lava, whereas Pl-B phenocrysts are present dominantly in the pillow lava, which reflects reducing melt–rock interaction and enhanced magma mixing, recharging and differentiation from the bottom to the top of the hole. In addition, the extensive magma mixing and differentiation recorded by Pl-B phenocrysts in the pillow lava require the existence of a melt lens beneath the mid-ocean ridge. Consistently, the plagioclase phenocrysts in the pillow lava mostly lack melt inclusions, corresponding to very weak melt–rock reactions, which indicates that the magma was transported through plagioclase cumulates by channel flow and requires a higher magma supply to the magma conduit. Therefore, the textural and compositional variations of plagioclase phenocrysts in the samples reflect the changes in magma dynamics of the mid-ocean ridge basalt through time with respect to oceanic crustal accretion at slow-spreading ridges. Overall, the oceanic crustal accretion process is sensitive to the magma supply. In the period between two episodes of extension, owing to a low melt supply the primitive melt percolates through and interacts with the mush zone by porous flow, which produces melt inclusion-bearing high-An plagioclase through dissolution–crystallization processes. At the initial stage of a new episode of extension, the melt infiltrates the mush zone and entrains crystal cargoes including melt inclusion-bearing high-An plagioclase. During the major stage of extension, owing to a relatively high melt supply the melt penetrates the mush zone by channel flow and can pool as melt lenses somewhere beneath the dikes; this forms intermediate plagioclases and the reverse zoning of plagioclases by magma mixing, recharging and differentiation in the melt lens. Such magmatic processes might occur repeatedly during the episodic extension that accompanies oceanic crustal accretion at slow-spreading ridges, which enhances the lateral structural heterogeneity of the oceanic crust.


Geology ◽  
2000 ◽  
Vol 28 (2) ◽  
pp. 179-182 ◽  
Author(s):  
Simon Allerton ◽  
Javier Escartín ◽  
Roger C. Searle

Elements ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Elisabetta Rampone ◽  
Alessio Sanfilippo

The Alpine–Apennine ophiolites are lithospheric remnants of the Jurassic Alpine Tethys Ocean. They predominantly consist of exhumed mantle peridotites with lesser gabbroic and basaltic crust and are locally associated with continental crustal material, indicating formation in an environment transitional from an ultra-slow-spreading seafloor to a hyperextended passive margin. These ophiolites represent a unique window into mantle dynamics and crustal accretion in an ultra-slow-spreading extensional environment. Old, pre-Alpine, lithosphere is locally preserved within the mantle sequences: these have been largely modified by reaction with migrating asthenospheric melts. These reactions were active in both the mantle and the crust and have played a key role in creating the heterogeneous oceanic lithosphere in this branch of the Mesozoic Western Tethys.


Sign in / Sign up

Export Citation Format

Share Document