scholarly journals Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 313-326 ◽  
Author(s):  
M. V. Chertova ◽  
T. Geenen ◽  
A. van den Berg ◽  
W. Spakman

Abstract. Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free slip) sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries and free plates immediately develops into strong rollback with high trench retreat velocities and predominantly laminar asthenospheric flow. In contrast, free-slip sidewalls prove highly restrictive on subduction rollback evolution, unless the lithosphere plates are allowed to move away from the sidewalls. This initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls but only the flow magnitude. In contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio model and slab evolution does not resemble the evolution obtained with open boundaries using 6:1 aspect ratio. For models with open side boundaries, we could develop a flow-speed scaling based on energy dissipation arguments to convert between flow fields of different model aspect ratios. We have also investigated incorporating the effect of far-field generated lithosphere stress in our open boundary models. By applying realistic normal stress conditions to the strong part of the overriding plate at the sidewalls, we can transfer intraplate stress to influence subduction dynamics varying from slab roll-back, stationary subduction, to advancing subduction. The relative independence of the flow field on model aspect ratio allows for a smaller modelling domain. Open boundaries allow for subduction to evolve freely and avoid the adverse effects (e.g. forced return flows) of free-slip boundaries. We conclude that open boundaries in combination with intraplate stress conditions are to be preferred for modelling subduction evolution (rollback, stationary or advancing) using regional model domains.

2012 ◽  
Vol 4 (1) ◽  
pp. 707-744 ◽  
Author(s):  
M. Chertova ◽  
T. Geenen ◽  
A. van den Berg ◽  
W. Spakman

Abstract. Subduction modelling in regional model domains, in 2-D or 3-D, is commonly done using closed, vertical boundaries. In this paper we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction but with implication for 3-D modelling. Open sidewalls allow for lateral in- and outflow consistent with the internal dynamics of the model and may simulate the real-mantle environment of subduction much better than closed boundaries, which induce return flows. Our experiments are focused on using open and closed (free-slip) sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries immediately develops into strong rollback with high trench retreat velocities. Mantle asthenosphere flow forced by rollback is predominantly laminar and facilitated by the open boundaries. In contrast, free-slip sidewalls proof restrictive on subduction rollback evolution unless the lithosphere plates are allowed to move away from the sidewalls. This, however, initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls. Again, in contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio and does not resemble the 6:1 evolution obtained with open boundaries. We notice a general drop in the amplitude of mantle flow when changing to the 6:1 aspect ratio, which is caused by the increasing shear friction between mantle and lithosphere while the driving slab buoyancy is the same. Based on energy-dissipation arguments we applied a flow speed scaling to convert between flow fields of different model aspect ratios. This proved succesful for the open boundary model. We have also investigated the effect of far-field stress conditions in our open boundary models. Applying realistic normal stress conditions to the strong part of the overriding plate we show that "intra-plate" stresses control subduction dynamics resulting in slab roll-back, stationary or advancing subduction. We conclude that open boundaries are to be preferred for modelling subduction evolution (rollback, stationary or advancing). The relative independence of model aspect ratio avoids the need to place sidewalls at large distance and allows to focus all computational resources on a smaller modelling domain. Open boundaries simulate the natural subduction environment better and avoid the adverse effects (e.g. forced return flows) of free-slip boundaries.


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 380
Author(s):  
Jun-Hyun Kim ◽  
Sanghyun You ◽  
Chang-Koo Kim

Si surfaces were texturized with periodically arrayed oblique nanopillars using slanted plasma etching, and their optical reflectance was measured. The weighted mean reflectance (Rw) of the nanopillar-arrayed Si substrate decreased monotonically with increasing angles of the nanopillars. This may have resulted from the increase in the aspect ratio of the trenches between the nanopillars at oblique angles due to the shadowing effect. When the aspect ratios of the trenches between the nanopillars at 0° (vertical) and 40° (oblique) were equal, the Rw of the Si substrates arrayed with nanopillars at 40° was lower than that at 0°. This study suggests that surface texturing of Si with oblique nanopillars reduces light reflection compared to using a conventional array of vertical nanopillars.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 78
Author(s):  
Kalyani Bhide ◽  
Kiran Siddappaji ◽  
Shaaban Abdallah

This work attempts to connect internal flow to the exit flow and supersonic jet mixing in rectangular nozzles with low to high aspect ratios (AR). A series of low and high aspect ratio rectangular nozzles (design Mach number = 1.5) with sharp throats are numerically investigated using steady state Reynolds-averaged Navier−Stokes (RANS) computational fluid dynamics (CFD) with k-omega shear stress transport (SST) turbulence model. The numerical shadowgraph reveals stronger shocks at low ARs which become weaker with increasing AR due to less flow turning at the throat. Stronger shocks cause more aggressive gradients in the boundary layer resulting in higher wall shear stresses at the throat for low ARs. The boundary layer becomes thick at low ARs creating more aerodynamic blockage. The boundary layer exiting the nozzle transforms into a shear layer and grows thicker in the high AR nozzle with a smaller potential core length. The variation in the boundary layer growth on the minor and major axis is explained and its growth downstream the throat has a significant role in nozzle exit flow characteristics. The loss mechanism throughout the flow is shown as the entropy generated due to viscous dissipation and accounts for supersonic jet mixing. Axis switching phenomenon is also addressed by analyzing the streamwise vorticity fields at various locations downstream from the nozzle exit.


2017 ◽  
Vol 34 (12) ◽  
pp. 2569-2587 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Carl G. Schmitt ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρhυ linear polarization measurements. Essentially combining information contained in ZDR and ρhυ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.


Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


2014 ◽  
Vol 695 ◽  
pp. 384-388
Author(s):  
Nor Azwadi Che Sidik ◽  
A.S. Ahmad Sofianuddin ◽  
K.Y. Ahmat Rajab

In this paper, Constrained Interpolated Profile Method (CIP) was used to simulate contaminants removal from square cavity in channel flow. Predictions were conducted for the range of aspect ratios from 0.25 to 4.0. The inlet parabolic flow with various Reynolds number from 50 to 1000 was used for the whole presentation with the same properties of contaminants and fluid. The obtained results indicated that the percentage of removal increased at high aspect ratio of cavity and higher Reynolds number of flow but it shows more significant changes as increasing aspect ratio rather than increasing Reynolds number. High removal rate was found at the beginning of the removal process.


Sign in / Sign up

Export Citation Format

Share Document