The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems

2022 ◽  
Vol 14 (1) ◽  
pp. 1-54
Author(s):  
Victor Lagerkvist ◽  
Magnus Wahlström

We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the context of the strong exponential-time hypothesis (SETH) , showing non-trivial lower and upper bounds on the running time. Here, by a non-trivial lower bound for a problem SAT (Γ) (respectively CSP (Γ)) with constraint language Γ, we mean a value c 0 > 1 such that the problem cannot be solved in time O ( c n ) for any c < c 0 unless SETH is false, while a non-trivial upper bound is simply an algorithm for the problem running in time O ( c n ) for some c < 2. Such lower bounds have proven extremely elusive, and except for cases where c 0 =2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near unanimity operations and edge operations . Using this connection we construct improved algorithms for several interesting classes of sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it admits a non-trivial partial invariant of the above form.

Author(s):  
Peter Jonsson ◽  
Victor Lagerkvist

We study the fine-grained complexity of NP-complete, infinite-domain constraint satisfaction problems (CSPs) parameterised by a set of first-order definable relations (with equality). Such CSPs are of central importance since they form a subclass of any infinite-domain CSP parameterised by a set of first-order definable relations. We prove that under the randomised exponential-time hypothesis it is not possible to find c > 1 such that a CSP over an arbitrary finite equality language is solvable in O(c^n) time (n is the number of variables). Stronger lower bounds are possible for infinite equality languages where we rule out the existence of 2^o(n log n) time algorithms; a lower bound which also extends to satisfiability modulo theories solving for an arbitrary background theory. Despite these lower bounds we prove that for each c > 1 there exists an NP-hard equality CSP solvable in O(c^n) time. Lower bounds like these immediately ask for closely matching upper bounds, and we prove that a CSP over a finite equality language is always solvable in O(c^n) time for a fixed c.


Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


2022 ◽  
Vol 69 (1) ◽  
pp. 1-18
Author(s):  
Anupam Gupta ◽  
David G. Harris ◽  
Euiwoong Lee ◽  
Jason Li

In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Balakrishna Krishnakumari ◽  
Mustapha Chellali ◽  
Yanamandram B. Venkatakrishnan

A vertex [Formula: see text] of a graph [Formula: see text] is said to [Formula: see text]-dominate every edge incident to [Formula: see text], as well as every edge adjacent to these incident edges. A set [Formula: see text] is a vertex-edge dominating set (double vertex-edge dominating set, respectively) if every edge of [Formula: see text] is [Formula: see text]-dominated by at least one vertex (at least two vertices) of [Formula: see text] The minimum cardinality of a vertex-edge dominating set (double vertex-edge dominating set, respectively) of [Formula: see text] is the vertex-edge domination number [Formula: see text] (the double vertex-edge domination number [Formula: see text], respectively). In this paper, we initiate the study of double vertex-edge domination. We first show that determining the number [Formula: see text] for bipartite graphs is NP-complete. We also prove that for every nontrivial connected graphs [Formula: see text] [Formula: see text] and we characterize the trees [Formula: see text] with [Formula: see text] or [Formula: see text] Finally, we provide two lower bounds on the double ve-domination number of trees and unicycle graphs in terms of the order [Formula: see text] the number of leaves and support vertices, and we characterize the trees attaining the lower bound.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-32
Author(s):  
Peter Jonsson ◽  
Victor Lagerkvist ◽  
Biman Roy

We study the constraint satisfaction problem (CSP) parameterized by a constraint language Γ (CSPΓ) and how the choice of Γ affects its worst-case time complexity. Under the exponential-time hypothesis (ETH), we rule out the existence of subexponential algorithms for finite-domain NP-complete CSPΓ problems. This extends to certain infinite-domain CSPs and structurally restricted problems. For CSPs with finite domain D and where all unary relations are available, we identify a relation S D such that the time complexity of the NP-complete problem CSP({ S D }) is a lower bound for all NP-complete CSPs of this kind. We also prove that the time complexity of CSP({ S D }) strictly decreases when |D| increases (unless the ETH is false) and provide stronger complexity results in the special case when |D|=3.


2017 ◽  
Vol 5 (1) ◽  
pp. 33-43
Author(s):  
Vikram Srinivasan ◽  
Daryl Santos

Minimum makespan scheduling of Flow Shops with Multiple Processors (FSMPs), also known as the Hybrid Flow Shop (HFS), is classified as NP complete. Thus, the FSMP largely depends on strong heuristics to develop solutions to makespan scheduling instances. An FSMP consists of m stages wherein each stage has one or more processors through which n jobs are scheduled. This paper presents a heuristic based on the lower bound developed in a prior work in order to determine good makespan solutions in the FSMP environment. In the environment studied in this work, the multiple machines available at a particular processing stage are identical processors. In order to evaluate the proposed heuristic, its performance is compared to makespans obtained via the use of modified pure flow shop heuristics. Results show that the proposed heuristic is indeed a strong heuristic for the FSMP and it provides makespans that are better than those provided by some of the already existing pure flow shop heuristics that have been adapted for the FSMP environment.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Sign in / Sign up

Export Citation Format

Share Document