neuronal stimulation
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
pp. 2101826
Author(s):  
Claudia Collier ◽  
Nicolas Muzzio ◽  
Rohini Guntnur ◽  
Amanda Gomez ◽  
Carolina Redondo ◽  
...  

2021 ◽  
Author(s):  
Maxime Mazille ◽  
Peter Scheiffele ◽  
Oriane Mauger

Sub-cellular compartmentalization through the nuclear envelope has for a long time been primarily considered a physical barrier that separates nuclear and cytosolic contents. More recently, nuclear compartmentalization has emerged to harbor key regulatory functions in gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol reflecting the existence of mechanisms to control mRNA release into the cytosol. However, the biological relevance of the nuclear retention of mRNAs remains unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature neurons and reveal that transcripts stably retaining introns are broadly targeted for nuclear retention. We systematically probed these transcripts upon neuronal stimulation and found that sub-populations of nuclear-retained transcripts are bi-directionally regulated in response to cues: some appear targeted for degradation while others undergo splicing completion to generate fully mature mRNAs which are exported to the cytosol to increase functional gene expression. Remarkably, different forms of stimulation mobilize distinct groups of intron-retaining transcripts and this selectivity arises from the activation of specific signaling pathways. Overall, our findings uncover cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Wendy A. Herbst ◽  
Weixian Deng ◽  
James A. Wohlschlegel ◽  
Jennifer M. Achiro ◽  
Kelsey C. Martin

The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.


2021 ◽  
pp. 125-138
Author(s):  
Liang Guo
Keyword(s):  

2021 ◽  
Vol 118 (33) ◽  
pp. e2102265118
Author(s):  
Pedro Lobos ◽  
Alex Córdova ◽  
Ignacio Vega-Vásquez ◽  
Omar A. Ramírez ◽  
Tatiana Adasme ◽  
...  

The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation—a key event in synaptic plasticity and hippocampal memory—and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.


2021 ◽  
Author(s):  
Katerina O. Gospodinova ◽  
Ditte Olsen ◽  
Mathias Kaas ◽  
Susan M. Anderson ◽  
Jonathan Phillips ◽  
...  

AbstractSORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA damage, suggesting that the observed differences are unlikely to be the result of aberrant neuronal activity. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaofei Qi ◽  
Kexin Lyu ◽  
Long Meng ◽  
Cuixian Li ◽  
Hongzheng Zhang ◽  
...  

Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Bruno Sterlini ◽  
Alessandra Romei ◽  
Chiara Parodi ◽  
Davide Aprile ◽  
Michele Oneto ◽  
...  

AbstractMutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na+/K+ ATPase (NKA) pumps as major PRRT2-binding proteins. We confirmed PRRT2 and NKA interaction by biochemical approaches and showed their colocalization at neuronal plasma membrane. The acute or constitutive inactivation of PRRT2 had a functional impact on NKA. While PRRT2-deficiency did not modify NKA expression and surface exposure, it caused an increased clustering of α3-NKA on the plasma membrane. Electrophysiological recordings showed that PRRT2-deficiency in primary neurons impaired NKA function during neuronal stimulation without affecting pump activity under resting conditions. Both phenotypes were fully normalized by re-expression of PRRT2 in PRRT2-deficient neurons. In addition, the NKA-dependent afterhyperpolarization that follows high-frequency firing was also reduced in PRRT2-silenced neurons. Taken together, these results demonstrate that PRRT2 is a physiological modulator of NKA function and suggest that an impaired NKA activity contributes to the hyperexcitability phenotype caused by PRRT2 deficiency.


Author(s):  
Yimin Huang ◽  
Ying Jiang ◽  
Jiayingzi Wu ◽  
Jianguo Mei ◽  
Ji-Xin Cheng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document