fill fraction
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

Plasmonics ◽  
2021 ◽  
Author(s):  
Carlos Angulo Barrios

AbstractA surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the biosensor is numerically obtained by using rigorous couple wave analysis (RCWA). The performance of the biosensor is described in terms of the limit of detection, which is calculated as a function of key nanoribbon dimensional parameters, such as strip thickness and width, and fill fraction (nanoribbon width to array period ratio). The analysis shows that there are specific values of the fill fraction that optimize, that is, minimize, the limit of detection for particular nanoribbon dimensions. Fabrication issues are also discussed. This study is expected to assist in the design and implementation of SPR biosensors based on nanopatterned 2D materials.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6359
Author(s):  
Subhajit Bej ◽  
Toni Saastamoinen ◽  
Yuri P. Svirko ◽  
Jari Turunen

Nanocomposites, i.e., materials comprising nano-sized entities embedded in a host matrix, can have tailored optical properties with applications in diverse fields such as photovoltaics, bio-sensing, and nonlinear optics. Effective medium approaches such as Maxwell-Garnett and Bruggemann theories, which are conventionally used for modeling the optical properties of nanocomposites, have limitations in terms of the shapes, volume fill fractions, sizes, and types of the nanoentities embedded in the host medium. We demonstrate that grating theory, in particular the Fourier Eigenmode Method, offers a viable alternative. The proposed technique based on grating theory presents nanocomposites as periodic structures composed of unit-cells containing a large and random collection of nanoentities. This approach allows us to include the effects of the finite wavelength of light and calculate the nanocomposite characteristics regardless of the morphology and volume fill fraction of the nano-inclusions. We demonstrate the performance of our approach by calculating the birefringence of porous silicon, linear absorption spectra of silver nanospheres arranged on a glass substrate, and nonlinear absorption spectra for a layer of silver nanorods embedded in a host polymer material having Kerr-type nonlinearity. The developed approach can also be applied to quasi-periodic structures with deterministic randomness or metasurfaces containing a large collection of elements with random arrangements inside their unit cells.


Author(s):  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Karsten Rebner ◽  
Dieter Oelkrug

AbstractThe article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2–4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2–160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles. Graphical abstract


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5703
Author(s):  
Xiaolong Huang ◽  
Ning Li ◽  
Yang Kang

Fill fraction not only has a profound impact on the process of deflagration to detonation in pulsed detonation engine, but also affects the propulsion performance in both flight and ground tests. In this paper, a novel optical diagnostic method based on detonation exhaust radiation in visible and near-infrared region within 300–2600 nm is developed to determine the current working state in the gas–liquid two-phase pulsed detonation cycle. The results show that the radiation characteristic in each stage of detonation cycle is unique and can be a good indicator to infer the fill fraction. This is verified experimentally by comparison with the laser absorption spectroscopy method, which utilizes a DFB laser driven by ramp injection current to scan H2O transition of 1391.67 nm at a frequency of 20 kHz. Due to concentrated radiation intensity, time duration reaching accumulated radiant energy ratio of 50% in detonation status would be smaller than 1.2 ms, and detonation status would be easily distinguished from deflagration with this critical condition. In addition, the variation of important intermediates OH, CH, and C2 radicals during detonation combustion are obtained according to the analysis of detonation spectrum, which can also be proposed as a helpful optical diagnostics method for the combustion condition based on C radical concentration. The study demonstrates the feasibility of optical diagnostics based on radiation in visible and near-infrared regions, which could provide an alternative means to diagnose and improve pulsed detonation engine performance.


2021 ◽  
Author(s):  
Mingxiang Gao ◽  
Wenqiong Zhang ◽  
Bin Guo

Abstract We investigate the photonic spin Hall effect (PSHE) in a symmetrical hyperbolic metamaterial (HMM) waveguide, which is constructed as an HMM/metal/HMM sandwich structure. We consider both type {\uppercase\expandafter{\romannumeral 1}} and type {\uppercase\expandafter{\romannumeral 2}} HMM in the study. We confirm that the structure of alternating sub-wavelength of plasma and dielectric or the structure of embedding plasma into a host dielectric matrix can display effective dielectric, effective metal, type {\uppercase\expandafter{\romannumeral 1}} and {\uppercase\expandafter{\romannumeral 2}} HMM under different wavelength ranges and different plasma fill fraction. This enable us to simultaneously realize type {\uppercase\expandafter{\romannumeral 1}} and type {\uppercase\expandafter{\romannumeral 2}} HMM. We show that the reflectivity ration $\vert r_{s}/r_{p} \vert$, directly related to transverse shifts generated by PSHE, greatly depends on the type and the thickness of HMM. Moreover, we find that the horizontal PSHE shifts are enhanced several times, especially in type {\uppercase\expandafter{\romannumeral 1}} structure; while the vertical PSHE shifts are significantly suppressed in both type {\uppercase\expandafter{\romannumeral 1}} and {\uppercase\expandafter{\romannumeral 2}} structure. By making the effect of metal type and thickness analysis, we further show that the impacts of these two factors on PSHE shifts are mainly subject to HMM thickness.


2021 ◽  
Vol 11 ◽  
pp. 14
Author(s):  
A.A. Pevtsov ◽  
Y. Liu ◽  
I. Virtanen ◽  
L. Bertello ◽  
K. Mursula ◽  
...  

Full disk vector magnetic fields are used widely for developing better understanding of large-scale structure, morphology, and patterns of the solar magnetic field. The data are also important for modeling various solar phenomena. However, observations of vector magnetic fields have one important limitation that may affect the determination of the true magnetic field orientation. This limitation stems from our ability to interpret the differing character of the Zeeman polarization signals which arise from the photospheric line-of-sight vs. the transverse components of the solar vector magnetic field, and is likely exacerbated by unresolved structure (non-unity fill fraction) as well as the disambiguation of the 180° degeneracy in the transverse-field azimuth. Here we provide a description of this phenomenon, and discuss issues, which require additional investigation.


Author(s):  
Kateryna Deineka ◽  
Yurii Naumenko ◽  
Anatolii Zmiievskyi

The influences of the structure of two-fractional polygranular intrachamber fill on the drum rotation velocity value when auto-oscillation self-excitation with maximum swing is considered. The pulsating mode of flow of such intrachamber fill is used in the self-oscillating grinding process in a tumbling mill. Spherical particles of non-coherent granular material of 2.2 mm size were used as a large fraction modeling the grinding bodies. Cement was used as the small fraction modeling the particles of the crushed material. The factors of experimental studies were accepted: the gaps between particles of large fraction degree of filling at rest dispersed particles of small fraction 0, 25, 50 and 100%, the relative size of particles of large fraction in the drum chamber 0.519, 0.733, 1.04, 1.47, 2.08, 2.93, 4.15 and 5.87% (drum chamber radius 212, 150, 106, 75, 53, 37.5, 26.5 and 18.75 mm), the chamber degree of filling at rest 25, 35 and 45%. The method of visual analysis of transient processes of self-oscillating fill flow modes in the cross section of a rotating chamber was applied. Measurements of the drum rotation velocity during fill self-excited self-oscillations were performed. The magnitude of the self-oscillation swing was estimated by the increase in the difference of the maximum and minimum values of the fill dilatation over one period of pulsating. The magnitude of the relative drum rotation velocity at the maximum range of fill self-oscillation swing varied within 0.777-1.4. The effect of a decrease in the relative drum rotation velocity value, when the maximum polygranular intrachamber fill self-oscillations swing, with enhanced fill coherent properties has been registered. A decrease in the relative rotational velocity was established with a decrease in the relative particle size of large fill fraction and an increase in the content of small fill fraction and an increase in the chamber degree of filling. A sharp intensification of the decrease in the relative rotation velocity at a value of the relative size of large particles of less than 0.015 is revealed.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 282 ◽  
Author(s):  
Chun-Ju Yang ◽  
Hai Yan ◽  
Naimei Tang ◽  
Yi Zou ◽  
Yas Al-Hadeethi ◽  
...  

Defect-engineered photonic crystal (PC) microcavities were fabricated by UV photolithography and their corresponding sensitivities to biomarkers in patient plasma samples were compared for different resonant microcavity characteristics of quality factor Q and biomarker fill fraction. Three different biomarkers in plasma from pancreatic cancer patients were experimentally detected by conventional L13 defect-engineered microcavities without nanoholes and higher sensitivity L13 PC microcavities with nanoholes. 8.8 femto-molar (0.334 pg/mL) concentration of pancreatic cancer biomarker in patient plasma samples was experimentally detected which are 50 times dilution than ELISA in a PC microcavity with high quality factor and high analyte fill fraction.


2020 ◽  
Vol 81 (2) ◽  
pp. 217-227
Author(s):  
Khalid Hassan ◽  
Olfat Hamdy ◽  
Mohamed Helmy ◽  
Hossam Mostafa

Abstract This paper documents the results of 12 months of monitoring of an upgraded hybrid moving bed biofilm reactor-conventional activated sludge wastewater treatment plant (MBBR-CAS WWTP). It also targets the assessment of the increment of the hydraulic load on existing treatment units with a zero construction and land cost. The influent flow to the plant was increased from 21,000 m3 d−1 to 30,000 m3 d−1, 40% of the existing CAS reactor volume was used for the MBBR zone with a carrier fill fraction of 47.62% and with Headworks Bio ActiveCell™ 515 used as media; no modifications were made for the primary and secondary tanks. The hybrid reactor showed high removal efficiencies for biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS), with average effluent values recording 33.00 ± 8.87 mg L−1, 52.90 ± 9.65 mg L−1 and 29.50 ± 6.64 mg L−1 respectively. Nutrient removals in the hybrid modified biological reactor were moderate compared with carbon removal despite the high C/N ratio of 12.33. Findings in this study favor the application of MBBR in the upgrading of existing CAS plants with the plant BOD5 removal efficiency recording an increase of about 5% compared with the plant before upgrade and effluent values well within the legal requirements.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 4117-4127 ◽  
Author(s):  
N. Scott Lynn ◽  
Tomáš Špringer ◽  
Jiří Slabý ◽  
Barbora Špačková ◽  
Michaela Gráfová ◽  
...  

We examine analyte transport to numerous plasmonic micro- and nano-structures having variable fill fraction, and via sensorgram analysis (ssDNA detection), we show that measured rates of transport match well to a simple theoretical model.


Sign in / Sign up

Export Citation Format

Share Document