radiofrequency hyperthermia
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 2058 (1) ◽  
pp. 012011
Author(s):  
A A Fronya ◽  
S V Antonenko ◽  
S I Derzhavin ◽  
N V Karpov ◽  
A Yu Kharin ◽  
...  

Abstract We elaborated a technique of pulsed laser ablation in gas mixtures (He-N2), maintained under residual pressures of 0.5–5 Torr to deposit silicon (Si)-based nanostructured films on a substrate. We show that the deposited films can exhibit strong photoluminescence (PL) emission with the position of peaks depending on the pressure of ambient gas and the ratio of gases in the mixture. Nanostructured films prepared in pure He gas exhibited a strong band in the infrared range (around 760 nm) and a weak band in the green range (550 nm), which were attributed to quantum-confined excitonic states in small Si nanocrystals and radiative transitions via the localized electronic states in silicon suboxide coating, respectively. In contrast, nanostructured films prepared in He-N2 mixtures exhibited more intense “green-yellow” PL band centered at 580 nm, which was attributed to a radiative recombination in amorphous oxynitride (a-SiNxOy) coating of Si nanocrystals. We also present a detailed analysis of morphology of nanostructures Si-based films prepared by laser ablation. Finally, we show that the nanocrystals can be removed from the substrate and milled by ultrasound to form aqueous solutions of colloidal Si nanopartiles. The fabricated Si-based nanocrystals present a promising object for theranostics, combining imaging functionality based on PL emission and a series of therapy functionalities (photo and radiofrequency hyperthermia, photodynamic therapy).


2021 ◽  
Vol 11 ◽  
Author(s):  
Minjiang Chen ◽  
Feng Zhang ◽  
Jingjing Song ◽  
Qiaoyou Weng ◽  
Peicheng Li ◽  
...  

PurposeTo validate the feasibility of using peri-tumoral radiofrequency hyperthermia (RFH)-enhanced chemotherapy to obliterate hepatic tumor margins.Method and MaterialsThis study included in vitro experiments with VX2 tumor cells and in vivo validation experiments using rabbit models of liver VX2 tumors. Both in vitro and in vivo experiments received different treatments in four groups (n=6/group): (i) RFH-enhanced chemotherapy consisting of peri-tumoral injection of doxorubicin plus RFH at 42°C; (ii) RFH alone; (iii) doxorubicin alone; and (iv) saline. Therapeutic effect on cells was evaluated using different laboratory examinations. For in vivo experiments, orthotopic hepatic VX2 tumors in 24 rabbits were treated by using a multipolar radiofrequency ablation electrode, enabling simultaneous delivery of both doxorubicin and RFH within the tumor margins. Ultrasound imaging was used to follow tumor growth overtime, correlated with subsequent histopathological analysis.ResultsIn in vitro experiments, MTS assay demonstrated the lowest cell proliferation, and apoptosis analysis showed the highest apoptotic index with RFH-enhanced chemotherapy, compared with the other three groups (p<0.01). In in vivo experiments, ultrasound imaging detected the smallest relative tumor volume with RFH-enhanced chemotherapy (p<0.01). The TUNEL assay further confirmed the significantly increased apoptotic index and decreased cell proliferation in the RFH-enhanced therapy group (p<0.01).ConclusionThis study demonstrates that peri-tumoral RFH can specifically enhance the destruction of tumor margins in combination with peri-tumoral injection of a chemotherapeutic agent. This new interventional oncology technique may address the critical clinical problem of frequent marginal tumor recurrence/persistence following thermal ablation of large (>3 cm) hepatic cancers.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2946
Author(s):  
Kemal Sumser ◽  
Gennaro G. Bellizzi ◽  
Gerard C. van Rhoon ◽  
Margarethus M. Paulides

The potential of MR thermometry (MRT) fostered the development of MRI compatible radiofrequency (RF) hyperthermia devices. Such device integration creates major technological challenges and a crucial point for image quality is the water bolus (WB). The WB is located between the patient body and external sources to both couple electromagnetic energy and to cool the patient skin. However, the WB causes MRT errors and unnecessarily large field of view. In this work, we studied making the WB MRI transparent by an optimal concentration of compounds capable of modifying T 2 * relaxation without an impact on the efficiency of RF heating. Three different T 2 * reducing compounds were investigated, namely CuSO 4 , MnCl 2 , and Fe 3 O 4 . First, electromagnetic properties and T 2 * relaxation rates at 1.5 T were measured. Next, through multi-physics simulations, the predicted effect on the RF-power deposition pattern was evaluated and MRT precision was experimentally assessed. Our results identified 5 mM Fe 3 O 4 solution as optimal since it does not alter the RF-power level needed and improved MRT precision from 0.39 ° C to 0.09 ° C. MnCl 2 showed a similar MRT improvement, but caused unacceptable RF-power losses. We conclude that adding Fe 3 O 4 has significant potential to improve RF hyperthermia treatment monitoring under MR guidance.


2020 ◽  
Vol 37 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Fatemeh Adibzadeh ◽  
Kemal Sumser ◽  
Sergio Curto ◽  
Desmond T. B. Yeo ◽  
Amir A. Shishegar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document