paleoenvironmental interpretation
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 3)

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105896
Author(s):  
Diego Sullivan de Jesus Alves ◽  
Francisco Sérgio Bernardes Ladeira ◽  
Alessandro Batezelli

Fossil Record ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 395-441
Author(s):  
Richard M. Besen ◽  
Ulrich Struck ◽  
Ekbert Seibertz

Abstract. Albian to Turonian carbonate deposits at three different locations of the Lower Saxony Cretaceous and thereby of the European mid-Cretaceous epeiric shelf sea were investigated for their fossil agglutinated foraminiferal fauna. In this study, 71 samples from two quarries and three drill cores were treated with formic acid, which enabled the study of agglutinated foraminiferal assemblages even in highly lithified limestones. In total, 114 species were determined and classified as belonging to nine morphogroups. In general, four agglutinated foraminiferal assemblages are distinguished: (1) an uppermost Albian–lowermost Cenomanian assemblage from the Wunstorf drill cores, with the dominant taxa Bathysiphon spp., Nothia spp., Psammosphaera fusca, Reophax subfusiformis, Bulbobaculites problematicus, Tritaxia tricarinata, Flourensina intermedia, Vialovella frankei, Arenobulimina truncata, and Voloshinoides advenus; (2) a Cenomanian assemblage from the Baddeckenstedt quarry and Wunstorf drill cores, with Ammolagena clavata, Tritaxia tricarinata, Vialovella frankei, Arenobulimina truncata, and Voloshinoides advenus; (3) an assemblage related to the Cenomanian–Turonian Boundary Event in Wunstorf and Söhlde dominated by Bulbobaculites problematicus; and (4) a Turonian assemblage in the Wunstorf and Söhlde sections with high numbers of Ammolagena contorta, Repmanina charoides, Bulbobaculites problematicus, Gerochammina stanislawi, and Spiroplectammina navarroana. The latest Albian–earliest Cenomanian assemblage consists of tubular, globular, and elongate foraminiferal morphogroups which are typical for the low- to mid-latitude slope biofacies. All other assemblages are composed of elongate foraminiferal morphogroups with additionally globular forms in the proximal settings of Baddeckenstedt and Söhlde or flattened planispiral and streptospiral forms in more distal settings of Wunstorf. For these assemblages, a new agglutinated foraminiferal biofacies named “mid-latitude shelf biofacies” is proposed herein. Changes in the relative abundance of different morphogroups can often be referred to single features of depositional sequences. Furthermore, classical macro-bioevents, which are often depositional-related, of the Lower Saxony Cretaceous seem to have a micro-bioevent or acme equivalent of the agglutinated foraminiferal fauna.


2021 ◽  
Author(s):  
◽  
Lockie Hobbs

<p>Two sections from the northern part of the Nga-Waka-A-Kupe Range have been documented in detail. Both sections were expected to cut through sediments of Pleistocene age which at the southern end of the range have been attributed to the Greycliffs Formation, Pukenui Limestone, Hautotara and Te Muna Formations. The Longbush Road section only included the upper Pukenui Limestone to Hautotara Formation. The Hinakura Road section was as expected and included the entire Pukenui Limestone and Hautotara Formation. Previous works in the Popes Head area have recognised the same sequence there. However, only a few correlations can confidently be made between the two areas. This is largely due to the Pukenui Limestone at Popes Head exhibiting a markedly different set of facies to the section in the southern part of the range – its type section.  The facies analysis on the two sections here reveals that the depositional environment for the Pukenui Limestone in the Popes Head area is of a near-coastal environment close to the discharge of a large river, where the nearby type section is interpreted as representing deeper marine conditions. The differences in environments could be due to shallowing section or increased discharge from the river in the Popes Head area. More likely, however, it is a combination of these two factors that result in a shallow-water facies.</p>


2021 ◽  
Author(s):  
◽  
Lockie Hobbs

<p>Two sections from the northern part of the Nga-Waka-A-Kupe Range have been documented in detail. Both sections were expected to cut through sediments of Pleistocene age which at the southern end of the range have been attributed to the Greycliffs Formation, Pukenui Limestone, Hautotara and Te Muna Formations. The Longbush Road section only included the upper Pukenui Limestone to Hautotara Formation. The Hinakura Road section was as expected and included the entire Pukenui Limestone and Hautotara Formation. Previous works in the Popes Head area have recognised the same sequence there. However, only a few correlations can confidently be made between the two areas. This is largely due to the Pukenui Limestone at Popes Head exhibiting a markedly different set of facies to the section in the southern part of the range – its type section.  The facies analysis on the two sections here reveals that the depositional environment for the Pukenui Limestone in the Popes Head area is of a near-coastal environment close to the discharge of a large river, where the nearby type section is interpreted as representing deeper marine conditions. The differences in environments could be due to shallowing section or increased discharge from the river in the Popes Head area. More likely, however, it is a combination of these two factors that result in a shallow-water facies.</p>


Author(s):  
Margot Guerra-Sommer ◽  
Isabela Degani-Schmidt ◽  
Joalice de Oliveira Mendonça ◽  
João Graciano Mendonça Filho ◽  
Fernando Danúbio Sousa Lopes ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
pp. 9-24
Author(s):  
Liliana Betancurth Montes ◽  
Julio Eduardo Cañón Barriga

This paper presents the first paleoenvironmental reconstruction of the last 1,130 a of the Marriaga Swamp in the Atrato River delta in northwestern Colombia. The geochemical analyses of a 220 cm sediment core retrieved from the swamp reveal interesting climatic episodes and sedimentary changes in the last millennium. We split the core into three segments, according to sediment features, organic carbon content (OC), and geological ages. Records show different alternations of humid and dry periods, biological productivity, carbonate precipitation, weathering grade, and high heavy metal concentrations. The segments also concur with the geochemical differences determined by (Zr+Rb)/Sr, Ca/Ti Mn/Fe, OC/Ti, Mg/Ca Ba/Al, Sr/Al, and Ca/Al ratios. The older sequence (between 1,130 ± 90 a and 870 ± 70 a) shows a dry period with intermittent flooding events and high OC production in subareal conditions, followed by a more humid environment between 870 ± 70 a and 530 ± 40 a, with depletion of trace element ratios and OC. The more recent period (530 ± 40 a to present) evinces an environment dominated by the fluvial regime, based on a lower Ca/Al ratio and a rise of OC. The statistical correlations display three main clusters that distinguish among organic-biological productivity, bedrock source components, and heavy metal inputs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Christian A. Sidor ◽  
Neil J. Tabor ◽  
Roger M. H. Smith

A new burnetiamorph therapsid, Isengops luangwensis, gen. et sp. nov., is described on the basis of a partial skull from the upper Madumabisa Mudstone Formation of the Luangwa Basin of northeastern Zambia. Isengops is diagnosed by reduced palatal dentition, a ridge-like palatine-pterygoid boss, a palatal exposure of the jugal that extends far anteriorly, a tall trigonal pyramid-shaped supraorbital boss, and a recess along the dorsal margin of the lateral temporal fenestra. The upper Madumabisa Mudstone Formation was deposited in a rift basin with lithofacies characterized by unchannelized flow, periods of subaerial desiccation and non-deposition, and pedogenesis, and can be biostratigraphically tied to the upper Cistecephalus Assemblage Zone of South Africa, suggesting a Wuchiapingian age. Isengops is the second burnetiamorph recognized from Zambia and is part of a tetrapod assemblage remarkably similar to others across southern Pangea during the Wuchiapingian. A revised cladistic analysis of Biarmosuchia yielded over 500 most parsimonious trees that generally reaffirm the results of previous analyses for burnetiamorphs: Lemurosaurus is basal, Lobalopex and Isengops are proximate burnetiid outgroups, and Bullacephalus, Burnetia, Mobaceras, Niuksenitia, and Pachydectes are burnetiines. Furthermore, Russian biarmosuchians are scattered throughout the tree and do not form sister taxon relationships with each other. Burnetiamorphs display a wide disparity of cranial adornments and are relatively speciose (13 species), especially when compared to the number of specimens discovered to date (∼16 specimens). As has been suggested in some other tetrapod clades (e.g., ceratopsian dinosaurs), the burnetiamorph fossil record supports an inferred macroevolutionary relationship between cranial adornment and increased speciation rate.


Sign in / Sign up

Export Citation Format

Share Document