bulk rock chemistry
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 26 (53) ◽  
pp. 1-17
Author(s):  
Nomuulin Amarbayar ◽  
Noriyoshi Tsuchiya ◽  
Otgonbayar Dandar ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
...  

Serpentinization of ultramafic rocks in ophiolites is key to understanding the global cycle of elements and changes in the physical properties of lithospheric mantle. Mongolia, a central part of the Central Asian Orogenic Belt (CAOB), contains numerous ophiolite complexes, but the metamorphism of ultramafic rocks in these ophiolites has been little studied. Here we present the results of our study of the serpentinization of an ultramafic body in the Manlay Ophiolite, southern Mongolia. The ultramafic rocks were completely serpentinized, and no relics of olivine or orthopyroxene were found. The composition of Cr-spinels [Mg# = Mg/(Mg + Fe2+) = 0.54 and Cr# = Cr/(Cr + Al) = 0.56] and the bulk rock chemistry (Mg/Si = 1.21–1.24 and Al/Si < 0.018) of the serpentinites indicate their origin from a fore-arc setting. Lizardite occurs in the cores and rims of mesh texture (Mg# = 0.97) and chrysotile is found in various occurrences, including in bastite (Mg# = 0.95), mesh cores (Mg# = 0.92), mesh rims (Mg# = 0.96), and later-stage large veins (Mg# = 0.94). The presence of lizardite and chrysotile and the absence of antigorite suggests low-temperature serpentinization (<300 °C). The lack of brucite in the serpentinites implies infiltration of the ultramafic rocks of the Manlay Ophiolite by Si-rich fluids. Based on microtextures and mineral chemistry, the serpentinization of the ultramafic rocks in the Manlay Ophiolite took place in three stages: (1) replacement of olivine by lizardite, (2) chrysotile formation (bastite) after orthopyroxene and as a replacement of relics of olivine, and (3) the development of veins of chrysotile that cut across all previous textures. The complex texture of the serpentinites in the Manlay Ophiolite indicates multiple stages of fluid infiltration into the ultramafic parts of these ophiolites in southern Mongolia and the CAOB.


Lithos ◽  
2021 ◽  
pp. 106147
Author(s):  
Rachel Bezard ◽  
Kaj Hoernle ◽  
Jörg A. Pfänder ◽  
Brian Jicha ◽  
Reinhard Werner ◽  
...  

Author(s):  
Diogo Rosa ◽  
Alessandro Sandrin ◽  
Troels F.D. Nielsen ◽  
Høgni Vesturklett

The Isortoq Giant Dykes in the Proterozoic Gardar Province, South Greenland, includes Isortoq South giant dyke and Isortoq North giant dyke. The fine-grained Fe-Ti-V deposit hosted by the Isortoq South giant dyke, referred to as the Isortoq Fe-Ti-V deposit, is considered a good test site for the use of magnetic susceptibility for the mapping of ore grades. Here, we test this and show that the Fe, Ti and V distribution is controlled by titanomagnetite disseminated throughout fine-grained troctolite. The deposit displays a clear correlation between magnetic susceptibility and Fe, Ti and V grades in bulk samples of consecutive 2 m sections from 11 drill cores, totalling 2671 m in length. We observe that Fe, Ti and V are almost entirely hosted in titanomagnetite, which controls the magnetic susceptibility. Field measurements of the magnetic susceptibility can thus be considered as a reliable exploration tool for this type of mineralisation. We further consider the origins of the deposit by reconnaissance petrography, mineral and bulk rock chemistry of the large mass of aphanitic Fe-rich troctolite in the Isortoq South giant dyke. We suggest that the deposit may represent the base of a basanitic to trachybasaltic magma chamber, in which Fe-rich immiscible melts accumulated, crystallised and fractionated. The processes suggested here may apply to other giant dykes and intrusions of the Gardar Province.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 418 ◽  
Author(s):  
Ying Jiang ◽  
Guanghai Shi ◽  
Liguo Xu ◽  
Xinling Li

The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. Chondrite-normalized REE patterns of most samples exhibit strong to moderate negative Eu anomalies (0.04–0.67), moderate LREE enrichments, nearly flat HREE patterns, and low ΣREE contents (2.16–11.25 ppm). The nephrite samples have δ18O and δD values of 5.3 to 7.4‰ and –74.9 to –86.7‰, respectively. The mineralogy, bulk-rock chemistry, and O–H isotope characteristics are consistent with the dolomite-related nephrite classification. Based on mineral paragenetic relationships, three possible mineral crystallization stages are recognized: (1) diopside formed by prograde metasomatism; (2) nephrite jade formed by retrograde metasomatism and replacement of Stage I anhydrous minerals; (3) hydrothermal alteration after the nephrite formation. Features of transition metal contents indicate that the color of the Yinggelike nephrite is likely to be controlled by the Fe2+, Fe3+, and Mn. Yellowish color is related to Mn and especially Fe3+, while greenish color is related to Fe2+. Our new mineralogical and geochemical results on the Yinggelike nephrite provide better constraints on the formation of other nephrite deposits in the Altyn Tagh Mountains, and can facilitate future nephrite prospecting and research in the region.


2019 ◽  
Vol 56 (6) ◽  
pp. 654-671
Author(s):  
Carolyn Dziawa ◽  
Fred Gaidies ◽  
John Percival

Pressure–temperature–time (P–T–t) estimates for the Montresor Belt, obtained using phase equilibria and geospeedometry modelling integrated with in situ U–Th–Pb monazite geochronology, shed new light on the tectonometamorphic effects of the Snowbird phase of the Trans-Hudson orogeny. Typical metapelitic assemblages of the lower Montresor group consist of white mica, biotite, plagioclase, quartz, and andalusite, which in some rocks is partly or completely pseudomorphed by white mica. The observed assemblages reflect peak P–T conditions centring at approximately 575 °C and 3 kbar. Rocks with high bulk Fe/Mg contents contain compositionally zoned garnet, permitting the addition of further constraints on the conditions of metamorphism in the Montresor Belt: Core compositions of earliest-grown garnets indicate initial garnet crystallization at approximately 535 °C and 2.3 kbar, suggesting a nearly isobaric P–T path of prograde metamorphism with a gradient of approximately 50 °C·kbar–1. Chemical age-dating of monazite inclusions in garnet yields ages of ca. 1870 ± 9 to 1837 ± 9 Ma. Retrograde, pseudomorphic andalusite replacement by white mica at approximately 540 °C is inferred to have been controlled by variations in bulk rock chemistry. Morphologically corroded and chemically heterogeneous monazite adjacent to white mica pseudomorphs suggests that andalusite replacement took place at ca. 1792 ± 10 Ma, possibly associated with extension and movement along the detachment fault separating the upper and lower Montresor groups. Simulations of diffusion across chlorite- and biotite-filled cracks in garnet assumed to be coeval with andalusite replacement suggest that the rocks have experienced the retrograde event for at least 20 My.


2005 ◽  
Vol 39 (3) ◽  
pp. 241-256 ◽  
Author(s):  
Takeshi Sugimoto ◽  
Hidemi Ishibashi ◽  
Sadatsugu Wakamatsu ◽  
Takeru Yanagi

Sign in / Sign up

Export Citation Format

Share Document