scholarly journals Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 418 ◽  
Author(s):  
Ying Jiang ◽  
Guanghai Shi ◽  
Liguo Xu ◽  
Xinling Li

The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. Chondrite-normalized REE patterns of most samples exhibit strong to moderate negative Eu anomalies (0.04–0.67), moderate LREE enrichments, nearly flat HREE patterns, and low ΣREE contents (2.16–11.25 ppm). The nephrite samples have δ18O and δD values of 5.3 to 7.4‰ and –74.9 to –86.7‰, respectively. The mineralogy, bulk-rock chemistry, and O–H isotope characteristics are consistent with the dolomite-related nephrite classification. Based on mineral paragenetic relationships, three possible mineral crystallization stages are recognized: (1) diopside formed by prograde metasomatism; (2) nephrite jade formed by retrograde metasomatism and replacement of Stage I anhydrous minerals; (3) hydrothermal alteration after the nephrite formation. Features of transition metal contents indicate that the color of the Yinggelike nephrite is likely to be controlled by the Fe2+, Fe3+, and Mn. Yellowish color is related to Mn and especially Fe3+, while greenish color is related to Fe2+. Our new mineralogical and geochemical results on the Yinggelike nephrite provide better constraints on the formation of other nephrite deposits in the Altyn Tagh Mountains, and can facilitate future nephrite prospecting and research in the region.

2020 ◽  
Vol 83 (8) ◽  
pp. 1323-1334 ◽  
Author(s):  
YING-YUE SU ◽  
JIE GAO ◽  
YONG-FANG ZHAO ◽  
HAO-SONG WEN ◽  
JIN-JIE ZHANG ◽  
...  

ABSTRACT Wines from different regions have different qualities due to the impact of geographical location and climate. The sale of inferior wines seriously violates the fair-trade rights of consumers. This article provides an elemental analysis classification method for verifying the geographical origin of wines in the People's Republic of China. Inductively coupled plasma mass spectrometry, liquid chromatography isotope ratio mass spectrometry, and an isotope ratio mass spectrometer were used to analyze 142 wine samples collected from Helan Mountain, Xinjiang, Yunchuanzang, the Yanhuai Valley, and the Hexi Corridor regions. The data included elemental profiles, carbon isotope ratios (δ13C), and oxygen isotope ratios (δ18O). The results of multivariate analysis revealed that the geographical origin of wine is closely related to variations in elemental profiles and isotope ratios. Introducing δ18O and the elements Li, Mn, Ag, In, Th, Ta, and Re into the discriminant model yielded correct classification rates of the linear discriminant model of 90.8% for the training set and 87.3% for the test set. HIGHLIGHTS


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1550
Author(s):  
Ioannis K. Karabagias

Given the continuous consumer demand for products of high quality and specific origin, there is a great tendency for the application of multiple instrumental techniques for the complete characterization of foodstuffs or related natural products. Spectrometric techniques usually offer a full and rapid screenshot of products’ composition and properties by the determination of specific bio-molecules such as sugars, minerals, polyphenols, volatile compounds, amino acids, organic acids, etc. The present special issue aimed firstly to enhance the advances of the application of spectrometric techniques such as gas chromatography coupled to mass spectrometry (GC-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), isotope ratio mass spectrometry (IRMS), nuclear magnetic resonance (NMR), Raman spectroscopy, or any other spectrometric technique, in the analysis of foodstuffs such as meat, milk, cheese, potatoes, vegetables, fruits/fruit juices, honey, olive oil, chocolate, and other natural products. An additional goal was to fill the gap between food composition/food properties/natural products properties and food/natural products authenticity, using supervised and non-supervised chemometrics. Of the 18 submitted articles, nine were eventually published, providing new information to the field.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Cezara Voica ◽  
Dana-Alina Magdas ◽  
Ioana Feher

Characterization of beer samples is of interest because their compositions affect the taste and stability of beer and, also, consumer health. In this work, the characterizations of 20 Romanian beers were performed by mean of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Isotope Ratio Mass Spectrometry (IRMS) in order to trace heavy metals and isotopic content of them. Major, minor, and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and influence yeast metabolism. Beside this, the presence of the C4plants in the brewing process was followed. Our study has shown that the analyzed beers indicated the presence of different plant types used in brewing: C3, C3-C4mixtures, and also C4, depending on producers. Also the trace metal content of each sample is presented and discussed in this study. A comparison of the beers quality manufactured by the same producer but bottled in different type of packaging like glass, dose, or PET was made; our results show that no compositional differences among the same beer type exist.


2013 ◽  
Vol 7 (2) ◽  
pp. 515-535 ◽  
Author(s):  
D. A. Dixon ◽  
P. A. Mayewski ◽  
E. Korotkikh ◽  
S. B. Sneed ◽  
M. J. Handley ◽  
...  

Abstract. This study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere. It is the first study to measure more than 25 chemical constituents in the surface snow and firn across extensive regions of Antarctica. We present major ion, trace element, heavy metal, rare earth element and oxygen isotope data from a series of surface snow samples and shallow firn sections collected along four US ITASE traverses across East and West Antarctica. In each sample we measure dissolved concentrations of Na+, K+, Mg2+, Ca2+, Cl−, NO3+, SO42−, and MS− using ion chromatography and total concentrations of Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Li, and K using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). We also measure δ18O by isotope ratio mass spectrometry. Satellite remote sensing measurements of microwave backscatter and grain size are used to assist in the identification of glaze/dune areas across Antarctica and determine if these areas can possibly contain useful chemical climate records. The majority of the non-glaze/dune samples in this study exhibit similar, or lower, concentrations to those from previous studies. Consequently, the results presented here comprise a conservative baseline for Antarctic surface snow chemical concentrations. The elements Cd, Pb, As and Bi are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Local and global volcanic outgassing may account for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd and As. However, significant concentrations of Cd, Pb, and As remain across much of Antarctica.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2349
Author(s):  
Supalak Kongsri ◽  
Phitchan Sricharoen ◽  
Nunticha Limchoowong ◽  
Chunyapuk Kukusamude

Rice is a staple food for more than half of the world’s population. The discrimination of geographical origin of rice has emerged as an important issue to prevent mislabeling and adulteration problems and ensure food quality. Here, the discrimination of Thai Hom Mali rice (THMR), registered as a European Protected Geographical Indication (PGI), was demonstrated. Elemental compositions (Mn, Rb, Co, and Mo) and stable isotope (δ18O) in the rice were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and elemental analyzer isotope ratio mass spectrometry (EA-IRMS), respectively. The recoveries and precisions of all elements were greater than 98% and lower than 9%, respectively. The analytical precision (±standard deviation) was below ±0.2‰ for δ18O measurement. Mean of Mn, Rb, Co, Mo, and δ18O levels was 14.0 mg kg−1, 5.39 mg kg−1, 0.049 mg kg−1, 0.47 mg kg−1, and 25.22‰, respectively. Only five valuable markers combined with radar plots and multivariate analysis, linear discriminant analysis (LDA) could distinguish THMR cultivated from three contiguous provinces with correct classification and cross-validation of 96.4% and 92.9%, respectively. These results offer valuable insight for the sustainable management and regulation of improper labeling regarding geographical origin of rice in Thailand and other countries.


2020 ◽  
Author(s):  
Dmitriy Malinovskiy ◽  
Philip Dunn ◽  
Heidi Goenaga-Infante

<p>Carbon isotope ratios are typically expressed as isotope delta values d(<sup>13</sup>C/<sup>12</sup>C), often shortened to d<sup>13</sup>C. These are isotope ratios expressed relative to an international measurement standard, which for more than 30 years has been the virtual carbonate Vienna Peedee Belemnite (VPDB). While carbon isotope delta values relative to VPDB can be obtained with very small uncertainties, maintenance of the VPDB scale itself is challenging as it is based upon artefacts with exactly assigned isotope delta values. Linking the VPDB isotope delta scale to the SI would alleviate some of the issues inherent to artefact-based scales and aid long-term comparability of measurement results. Such a link is provided by determination of absolute isotope ratios, i.e., R(<sup>13</sup>C/<sup>12</sup>C).</p><p>New and improved methods for SI-traceable measurements of R(<sup>13</sup>C/<sup>12</sup>C) by both gas source isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) have been developed at LGC. These methods are based on the calibration approach using synthetic isotopologue mixtures. The developed methodology has been successfully applied to producing glycine reference materials, ERM-AE672a and LGC171-KT, with certified SI-traceable n(<sup>13</sup>C)/n(<sup>12</sup>C) isotope amount ratios under ISO 17025 and 17034 accreditations together with indicative d(<sup>13</sup>C/<sup>12</sup>C)<sub>VPDB</sub> values traceable to VPDB.</p><p>These new reference materials realise an absolute isotope ratio for VPDB itself R(<sup>13</sup>C/<sup>12</sup>C)<sub>VPDB</sub> through regression of the  n(<sup>13</sup>C)/n(<sup>12</sup>C) against d(<sup>13</sup>C/<sup>12</sup>C)<sub>VPDB</sub> values. Examining all published values for R(<sup>13</sup>C/<sup>12</sup>C)<sub>VPDB</sub>, including our most recent results, allows a better estimation of this quantity than has previously been achievable and points the way towards linking the VPDB isotope delta scale more firmly to the SI.</p>


Sign in / Sign up

Export Citation Format

Share Document