scholarly journals First Detection and Characterization of Cross- and Multiple Resistance to Acetyl-CoA Carboxylase (ACCase)- and Acetolactate Synthase (ALS)-Inhibiting Herbicides in Black-Grass (Alopecurus myosuroides) and Italian Ryegrass (Lolium multiflorum) Populations from Ireland

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1272
Author(s):  
Vijaya Bhaskar Alwarnaidu Vijayarajan ◽  
Patrick D Forristal ◽  
Sarah K Cook ◽  
David Schilder ◽  
Jimmy Staples ◽  
...  

Understanding the resistance spectrum and underlying genetic mechanisms is critical for managing herbicide-resistant populations. In this study, resistance to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors was investigated in four suspected resistant populations of Alopecurus myosuroides (ALOMY-001 to ALOMY-004) and Lolium multiflorum (LOLMU-001 to LOLMU-004), collected from cereal production fields in Ireland. Glasshouse assays with three ALOMY-active herbicides [propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron (ALS)] or five LOLMU-active herbicides [pinoxaden, propaquizafop, cycloxydim (ACCase) and mesosulfuron + iodosulfuron, pyroxsulam (ALS)], and target-site resistance mechanism studies, based on pyrosequencing, were carried out in each of those populations. For A. myosuroides, Ile-1781-Leu ACCase mutation contributed to propaquizafop and cycloxydim resistance (shoot dry weight GR50 resistance factor (RF) = 7.5–35.5) in all ALOMY populations, and the independent Pro-197-Thr or Pro-197-Ser ALS mutation contributed to mesosulfuron + iodosulfuron resistance (RF = 3.6–6.6), in ALOMY-002 to ALOMY-004. Most of the analyzed plants for these mutations were homo/heterozygous combinations or only heterozygous. For L. multiflorum, phenotypic resistance to mesosulfuron + iodosulfuron (RF = 11.9–14.6) and pyroxsulam (RF = 2.3–3.1) was noted in all LOLMU populations, but the Pro-197-Gln or Pro-197-Leu ALS mutation (mostly in homozygous status) was identified in LOLMU-001, LOLMU-002 and LOLMU-004 only. Additionally, despite no known ACCase mutations in any LOLMU populations, LOLMU-002 survived pinoxaden and propaquizafop application (RF = 3.4 or 1.3), and LOLMU-003 survived pinoxaden (RF = 2.3), suggesting the possibility of non-target-site resistance mechanisms for ACCase and/or ALS resistance in these populations. Different resistance levels, as evidenced by a reduction in growth as dose increased above field rates in ALOMY and LOLMU, were due to variations in mutation rate and the level of heterozygosity, resulting in an overall resistance rating of low to moderate. This is the first study confirming cross- and multiple resistance to ACCase- and ALS-inhibiting herbicides, highlighting that resistance monitoring in A. myosuroides and L. multiflorum in Ireland is critical, and the adoption of integrated weed management strategies (chemical and non-chemical/cultural strategies) is essential.

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1838
Author(s):  
Shiv Shankhar Kaundun ◽  
Joe Downes ◽  
Lucy Victoria Jackson ◽  
Sarah-Jane Hutchings ◽  
Eddie Mcindoe

Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here, we determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild-type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based-derived polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we identified three well-characterised I1781L, I2041T, and D2078G ACCase target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e58012 ◽  
Author(s):  
Shiv Shankhar Kaundun ◽  
Geraldine C. Bailly ◽  
Richard P. Dale ◽  
Sarah-Jane Hutchings ◽  
Eddie McIndoe

2021 ◽  
Author(s):  
Shiv Shankhar Kaundun ◽  
Joe Downes ◽  
Lucy Victoria Jackson ◽  
Sarah-Jane Hutchings ◽  
Eddie Mcindoe

Abstract Herbicides that inhibit acetyl-CoA carboxylase (ACCase) are among the few remaining options for the post-emergence control of Lolium species in small grain cereal crops. Here we have determined the mechanism of resistance to ACCase herbicides in a Lolium multiflorum population (HGR) from France. A combined biological and molecular approach detected a novel W2027L ACCase mutation that affects aryloxyphenoxypropionate (FOP) but not cyclohexanedione (DIM) or phenylpyraxoline (DEN) subclasses of ACCase herbicides. Both the wild type tryptophan and mutant leucine 2027-ACCase alleles could be positively detected in a single DNA-based derived Polymorphic amplified cleaved sequence (dPACS) assay that contained the targeted PCR product and a cocktail of two discriminating restriction enzymes. Additionally, we have identified three well-characterised I1781L, I2041T and D2078G target site resistance mutations as well as non-target site resistance in HGR. The non-target site component endowed high levels of resistance to FOP herbicides whilst partially impacting on the efficacy of pinoxaden and cycloxydim. This study adequately assessed the contribution of the W2027L mutation and non-target site mechanism in conferring resistance to ACCase herbicides in HGR. It also highlights the versatility and robustness of the dPACS method to simultaneously identify different resistance-causing alleles at a single ACCase codon.


2008 ◽  
Vol 22 (3) ◽  
pp. 431-434 ◽  
Author(s):  
Andrew T. Ellis ◽  
Gaylon D. Morgan ◽  
Thomas C. Mueller

Acetolactate synthase (ALS)–inhibiting herbicides are often used to control Italian ryegrass in winter wheat in Texas. An Italian ryegrass biotype near Waco, TX was evaluated for resistance to mesosulfuron in field and greenhouse experiments. Control of the biotype in the field was less than 10% with the label rate of mesosulfuron (15 g ai/ha). Greenhouse studies confirmed that the biotype was resistant to mesosulfuron; control of the biotype was less than 35% at 120 g ai/ha mesosulfuron. The herbicide dose required to reduce plant biomass of a susceptible and the Waco biotype by 50% (GR50) was 1.3 and 31 g ai/ha, respectively, indicating a resistance level of 24-fold in the Waco biotype. However, the Waco biotype was controlled with the acetyl-CoA carboxylase inhibitors diclofop and pinoxaden.


2017 ◽  
Vol 31 (3) ◽  
pp. 470-476 ◽  
Author(s):  
James T. Brosnan ◽  
Jose J. Vargas ◽  
Gregory K. Breeden ◽  
Sarah L. Boggess ◽  
Margaret A. Staton ◽  
...  

Methiozolin is an isoxazoline herbicide being investigated for selective POST annual bluegrass control in managed turfgrass. Research was conducted to evaluate methiozolin efficacy for controlling two annual bluegrass phenotypes with target-site resistance to photosystem II (PSII) or enolpyruvylshikimate-3-phosphate synthase (EPSPS)-inhibiting herbicides (i.e., glyphosate), as well as phenotypes with multiple resistance to microtubule and EPSPS or PSII and acetolactate synthase (ALS)-inhibiting herbicides. All resistant phenotypes were established in glasshouse culture along with a known herbicide-susceptible control and treated with methiozolin at 0, 125, 250, 500, 1000, 2000, 4000, or 8000 g ai ha−1. Methiozolin effectively controlled annual bluegrass with target-site resistance to inhibitors of EPSPS, PSII, as well as multiple resistance to EPSPS and microtubule inhibitors. Methiozolin rates required to reduce aboveground biomass of these resistant phenotypes 50% (GR50 values) were not significantly different from the susceptible control, ranging from 159 to 421 g ha−1. A phenotype with target-site resistance to PSII and ALS inhibitors was less sensitive to methiozolin (GR50=862 g ha−1) than a susceptible phenotype (GR50=423 g ha−1). Our findings indicate that methiozolin is an effective option for controlling select annual bluegrass phenotypes with target-site resistance to several herbicides.


2005 ◽  
Vol 19 (2) ◽  
pp. 261-265 ◽  
Author(s):  
Aaron J. Hoskins ◽  
Bryan G. Young ◽  
Ronald F. Krausz ◽  
John S. Russin

Field studies were established in 1999 and 2000 to evaluate Italian ryegrass, wheat, and double-crop soybean response to fall and spring postemergence applications of flucarbazone, sulfosulfuron, clodinafop, diclofop, and tralkoxydim applied alone and in combination with thifensulfuron + tribenuron to winter wheat. Fall-applied herbicides caused 5% or less wheat injury. Spring-applied herbicides caused 3 to 45% wheat injury, and the greatest injury occurred with the combination of flucarbazone with thifensulfuron + tribenuron in the spring of 2001. Spring-applied sulfosulfuron, tralkoxydim, diclofop, and clodinafop caused 3 to 6% and 16 to 26% wheat injury in 2000 and 2001, respectively. Herbicide injury to wheat did not reduce wheat grain yield compared with the hand-weeded treatment. Italian ryegrass competition in the nontreated plots reduced wheat yield by as much as 33% compared with herbicide-treated plots. Italian ryegrass control was 89 to 99% from clodinafop and diclofop and 78 to 97% from flucarbazone, with no differences because of application timing in either year of the study. Italian ryegrass control from sulfosulfuron and tralkoxydim was greater from the spring of 2000 applications (94 to 99%) compared with the fall of 1999 applications (65 to 88%). However, in 2001, application timing (fall vs. spring) for sulfosulfuron and tralkoxydim did not affect Italian ryegrass control. Thifensulfuron + tribenuron combined with tralkoxydim reduced control of Italian ryegrass control compared with tralkoxydim alone in both years of the study. Italian ryegrass control was not reduced when thifensulfuron + tribenuron was combined with sulfosulfuron, flucarbazone, diclofop, or clodinafop. Italian ryegrass was controlled effectively by the acetyl-CoA carboxylase–inhibiting herbicides diclofop, clodinafop, and tralkoxydim. However, control of Italian ryegrass with the acetolactate synthase–inhibiting herbicides flucarbazone and sulfosulfuron was inconsistent. Double-crop soybean after wheat did not have foliar symptoms or yield loss from fall- or spring-applied herbicides.


2011 ◽  
Vol 25 (4) ◽  
pp. 659-666 ◽  
Author(s):  
Aman Chandi ◽  
Alan C. York ◽  
David L. Jordan ◽  
Josh B. Beam

Diclofop-resistant Italian ryegrass is widespread in southwestern North Carolina, and growers have resorted to using acetolactate synthase (ALS) inhibitors such as mesosulfuron and pyroxsulam to control this weed in wheat. In the spring of 2007, mesosulfuron failed to control Italian ryegrass in several wheat fields. Seed were collected from six fields in two counties and greenhouse studies were conducted to determine response to mesosulfuron and the acetyl-CoA carboxylase (ACCase) inhibitors diclofop and pinoxaden. All populations were resistant to diclofop and cross-resistant to pinoxaden. Five of the six populations were resistant to diclofop, pinoxaden, and mesosulfuron. An additional study with two biotypes confirmed cross-resistance to the ALS inhibitors imazamox, mesosulfuron, and pyroxsulam. Resistance to mesosulfuron was heritable.


Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 614-623 ◽  
Author(s):  
Yong In Kuk ◽  
Nilda R. Burgos ◽  
Robert C. Scott

Diclofop-resistant Italian ryegrass is a major weed problem in wheat production. This study aimed to determine the resistance pattern of diclofop-resistant Italian ryegrass accessions from the southern United States to the latest commercialized herbicides for wheat production, pinoxaden and mesosulfuron, and to other acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibitors. Twenty-nine of 36 accessions were resistant to the commercial dose of diclofop. The majority (80%) of diclofop-resistant accessions were also resistant to clodinafop. Of 25 diclofop-resistant accessions, 5 were resistant to pinoxaden. All accessions tested were susceptible to the commercial dose of clethodim and sethoxydim. The cross-resistance pattern of diclofop-resistant Italian ryegrass to other ACCase inhibitors was 20% for pinoxaden and none with clethodim or sethoxydim. One accession was resistant to mesosulfuron but not to diclofop. This mesosulfuron-resistant accession was cross-resistant to sulfometuron but not to imazamox. All diclofop-resistant accessions tested were susceptible to ALS inhibitors, mesosulfuron, sulfometuron, and imazamox. Therefore, diclofop-resistant Italian ryegrass in Arkansas can be controlled with imazamox (in Clearfield wheat) and can mostly be controlled with mesosulfuron and pinoxaden. It could also be controlled by other selective grass herbicides in broadleaf crops.


2016 ◽  
Vol 67 (11) ◽  
pp. 1208 ◽  
Author(s):  
Lang Pan ◽  
Haitao Gao ◽  
Han Wu ◽  
Liyao Dong

American sloughgrass (Beckmannia syzigachne Steud.) is a problematic grass that is widely distributed in wheat and oilseed rape fields in China. The herbicides fenoxaprop-P-ethyl and mesosulfuron-methyl failed to control B. syzigachne JCWJ-R populations collected from a wheat field in Jiangsu Province. Dose-response experiments showed that JCWJ-R was resistant to the acetyl-CoA carboxylase (ACCase) inhibitors fenoxaprop-P-ethyl (33.8-fold), haloxyfop-R-methyl (12.7-fold), clethodim (7.8-fold) and pinoxaden (11.6-fold), and to the acetolactate synthase (ALS) inhibitors mesosulfuron-methyl (15.9-fold), pyroxsulam (17.6-fold), flucarbazone-Na (10.7-fold) and imazethapyr (7-fold). Resistance to ALS inhibitors was due to a Pro-197-Ser mutation in the ALS gene and resistance to ACCase inhibitors was due to an Ile-1781-Leu mutation in the ACCase gene. A derived cleaved amplified polymorphic sequence method was developed to detect the ALS mutation in B. syzigachne. This was combined with a previously established method to detect Ile-1781-Leu, and the mutation frequency and homozygous mutation rates in the JCWJ-R population were determined. The evolution of multiple resistance to ACCase and ALS inhibitors in this B. syzigachne population indicated that alternative methods should be developed to control resistant weeds.


2011 ◽  
Vol 51 (2) ◽  
pp. 130-133 ◽  
Author(s):  
Michał Krysiak ◽  
Stanisław Gawroński ◽  
Roman Kierzek ◽  
Kazimierz Adamczewski

Molecular Basis of Blackgrass (Alopecurus MyosuroidesHUDS.) Resistance to Sulfonylurea HerbicidesBlackgrass biotype resistant to the mesosulfuron + iodosulfuron mixture has been found in Poland and was investigated in this study. Seedlings that survived double-dosed herbicide treatment were submitted to molecular analysis in order to explain the mechanism of resistance. Domains A and B of the acetolactate synthase gene were amplified by PCR and then sequenced. Biotypes which were both resistant and susceptible to mesosulfuron+iodosulfuron were analyzed. The comparison of the obtained sequences was made on a nucleotide and aminoacid level. The comparison revealed a substitution of proline codon to histidine codon in position 197 in each resistant plant. Mutation Pro197His is the basis of the target site resistance ofA. myosuroidesto sulfonylureas. There were no other mutations inalsgene of the biotype that might modify the level of resistance to these herbicides.


Sign in / Sign up

Export Citation Format

Share Document