bacterial microbiota
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 281)

H-INDEX

46
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Raffaele Guzzon ◽  
Daniela Bertoldi ◽  
Tomas Roman ◽  
Roberto Zanzotti ◽  
Elena Franciosi

AbstractBacteria have a fundamental role in determining the fitness of grapevine, the composition of grapes and the features of wines but at present, little information is available. In this work, the bacteria colonizing the different portions of grapevine (bark, leaves and grapes) were explored in the vineyards of the Alpine region of Trentino, considering the impact of different environmental and agronomical variables. The vineyards included in the work were selected based on their different geographical positions (altitude) and grapevine training systems in order to explore the whole variability of the grapevine ecosystem. Moreover, the surface amount of copper was measured on grapes and leaves during the vegetative growth. Bacterial analysis, performed using plate counts and Illumina MiSeq, revealed an increase in the concentration of grape bacteria proportional to the progress of the ripening stage. Conversely, the peak of bacterial concentration onto leaf and bark samples occurred in August, probably due to the more favourable environmental conditions. In bark samples, the bacterial microbiota reached the 7 log CFU/cm2, while 6 log UFC/g were measured in grape samples. A remarkable biodiversity was observed, with 13 phyla, 35 classes, 55 orders, 78 families and 95 genera of bacteria present. The presence of some taxa (Alphaproteobacteria, Desulfovibrionaceae, Clostriadiales, Oscillospira, Lachnospiraceae and Bacteroidales) was ubiquitous in all vineyards, but differences in terms of relative abundance were observed according to the vegetative stage, altitude of the vineyard and training system. Bacteria having oenological implication (Lactobacillus, Pediococcus and Oenococcus) were detected in grape samples collected in August, in low abundance. The data revealed a complex bacterial ecosystem inside the vineyard that, while maintaining common traits, evolves according to environmental and agronomical inputs. This study contributes to define the role of bacteria in the complex balance established in each vineyard between human actions and agricultural environment, known as terroir.


Author(s):  
Lilian Gavazzoni ◽  
Mariana Felgueira Pavanelli ◽  
Angelivia Gregório ◽  
Priscila Wielewski ◽  
Douglas Galhardo ◽  
...  

2022 ◽  
Author(s):  
YANG Zhibo ◽  
CHEN Jun ◽  
SHANG Shuai ◽  
WANG Jing ◽  
XUE Song ◽  
...  

Abstract PurposeEpiphytic bacteria play an important role in macroalgae growth, development, and morphogenesis. However, epiphytic bacterial communities on male and female macroalgae have not been reported. Porphyra haitanensis is one of the main economic macroalgae.In order to explore the similarities and differences of epiphytic bacterial community structure between male and female macroalgae of Porphyra haitanensis.MethodsWe investigated the composition, diversity of epiphytic bacterial communities between male and female Porphyra haitanensis by 16S rDNA high-throughput sequencing.ResultsThe divergences of bacterial community compositions occurred between males and females. Both males and females had their unique bacterial microbiota, such as, Armatimonadetes and Rokubacteria are the unique phyla of male Porphyra haitanensis, Chlamydiae is a unique phylum of female Porphyra haitanensis. The epiphytic bacteria on both male and female Porphyra haitanensis have the similar predictive functions, but they also have their own specific functions, respectively.The specific functions of epiphytic bacteria on female Porphyra haitanensis were sulfite_respiration, nitrogen_fixation, nitrate_ammonification, chlorate_reducers and anoxygenic_photoautotrophy_S_oxidizing. ConclusionsThis study provides a basis for exploring the mechanism of epiphytic bacterial communities on dioecious algae and are of great significance for further understanding the relationships between epiphytic microbial communities and the sex of algae.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Bei Gao ◽  
Tsung-Chin Wu ◽  
Sonja Lang ◽  
Lu Jiang ◽  
Yi Duan ◽  
...  

Alcoholic hepatitis is a major health care burden in the United States due to significant morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk of death is extremely important for proper treatments and interventions to be instituted. In this study, we used gradient boosting, random forest, support vector machine and logistic regression analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed better performance than the currently used model for end-stage liver disease (MELD) score.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sergio George ◽  
Ximena Aguilera ◽  
Pablo Gallardo ◽  
Mauricio Farfán ◽  
Yalda Lucero ◽  
...  

Gut microbiota composition during the first years of life is variable, dynamic and influenced by both prenatal and postnatal factors, such as maternal antibiotics administered during labor, delivery mode, maternal diet, breastfeeding, and/or antibiotic consumption during infancy. Furthermore, the microbiota displays bidirectional interactions with infectious agents, either through direct microbiota-microorganism interactions or indirectly through various stimuli of the host immune system. Here we review these interactions during childhood until 5 years of life, focusing on bacterial microbiota, the most common gastrointestinal and respiratory infections and two well characterized gastrointestinal diseases related to dysbiosis (necrotizing enterocolitis and Clostridioides difficile infection). To date, most peer-reviewed studies on the bacterial microbiota in childhood have been cross-sectional and have reported patterns of gut dysbiosis during infections as compared to healthy controls; prospective studies suggest that most children progressively return to a “healthy microbiota status” following infection. Animal models and/or studies focusing on specific preventive and therapeutic interventions, such as probiotic administration and fecal transplantation, support the role of the bacterial gut microbiota in modulating both enteric and respiratory infections. A more in depth understanding of the mechanisms involved in the establishment and maintenance of the early bacterial microbiota, focusing on specific components of the microbiota-immunity-infectious agent axis is necessary in order to better define potential preventive or therapeutic tools against significant infections in children.


2022 ◽  
Author(s):  
Samat Amat ◽  
Edouard Timsit ◽  
Matthew Workentine ◽  
Timothy Schwinghamer ◽  
Frank van der Meer ◽  
...  

To address the emergence of antimicrobial-resistant pathogens in livestock, microbiome-based strategies are increasingly being sought to reduce antimicrobial use. Here, we describe the intranasal application of bacterial therapeutics (BTs) for mitigating bovine respiratory disease (BRD) and used structural equation modeling to investigate the causal networks after BT application.  Beef cattle received i) an intranasal cocktail of previously characterized BT strains, ii) an injection of metaphylactic antibiotic tulathromycin or iii) intranasal saline. Despite being transient colonizers, inoculated BT strains induced longitudinal modulation of the nasopharyngeal bacterial microbiota while showing no adverse effect on animal health. The BT-mediated changes in bacteria included reduced diversity and richness and strengthened cooperative and competitive interactions. In contrast, tulathromycin increased bacterial diversity and antibiotic resistance, and disrupted bacterial interactions. Overall, a single intranasal dose of BTs can modulate the bovine respiratory microbiota, highlighting that microbiome-based strategies have the potential in being utilized to mitigate BRD in feedlot cattle.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel A. Bastías ◽  
Ludmila Bubica Bustos ◽  
Ruy Jáuregui ◽  
Andrea Barrera ◽  
Ian S. Acuña-Rodríguez ◽  
...  

Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Jianbo Zhang ◽  
Peng Wang ◽  
Renqing Dingkao ◽  
Mei Du ◽  
Anum Ali Ahmad ◽  
...  

Background: The gut microbiota plays an important role in the health and production of animals. However, little information is available on the dynamic variations and comparison of intestinal microbiota in post-weaning yak calves living on the QTP. Methods: We explored the fecal bacterial microbiota succession of yak calves at different months after early weaning (60 d) compared with cattle calves by 16S rRNA gene amplicon sequencing and functional composition prediction. Results: We found no significant difference in blood biochemical parameters related to glucose and lipid metabolism between yaks and calves in different months after weaning. The core fecal bacterial microbiota from both species of calves was dominated by Ruminococcaceae, Rikenellaceae, and Bacteroidaceae. The fecal microbial community has a great alteration within the time after weaning in both cattle and yak calves, but cattle showed a larger change. After five months, the microbiota achieves a stable and concentrated state. This is also similar to the functional profile. Conclusions: Based on the exploration of dynamic changes in the fecal microbiota at an early stage of life, our results illustrated that there were no negative effects of intestinal microbiota succession on yak calves when early weaning was employed.


2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Silvia Schiavon ◽  
Mauro Paolini ◽  
Raffaele Guzzon ◽  
Andrea Mancini ◽  
Roberto Larcher ◽  
...  

Bacteria can play different roles affecting flavors and food characteristics. Few studies have described the bacterial microbiota of butter. In the present paper, next-generation sequencing was used to determine bacterial diversity, together with aromatic characteristics, in raw cow milk butter processed by traditional fermentation, in fourteen small farms called “Malga”, located in the Trentino province (Alpine region, North-East of Italy). The physicochemical and aromatic characterization of traditional mountain butter (TMB) showed a low moisture level depending on the Malga producing the butter. Counts of lactic acid bacteria, Staphylococci, and coliforms, as well as diacetyl/acetoin concentrations exhibited changes according to the geographical origin of Malga and the residual humidity of butter. MiSeq Illumina data analysis revealed that the relative abundance of Lactococcus was higher in TMB samples with the highest values of acetoin (acetoin higher than 10 mg/kg). The traditional mountain butter bacterial community was characterized by a “core dominance” of psychrotrophic genera, mainly Acinetobacter and Pseudomonas, but according to ANCOM analysis, a complex bacterial population emerged and specific bacterial genera were able to characterize the TMB bacteria community, with their high abundance, based on the Malga producing the butter.


Author(s):  
Demin Cao ◽  
Weihua Liu ◽  
Na Lyu ◽  
Boxing Li ◽  
Weibo Song ◽  
...  

Numerous studies have shown that the gut bacterial microbiota is altered in active TB patients and that anti-TB drugs have profound and long-term impacts. However, as an integral part of the microbiota, fungi have rarely been studied.


Sign in / Sign up

Export Citation Format

Share Document