scholarly journals Pressure-Driven Thermal Slip Flow in the Elliptical Channel with Radial Oscillatory Wall

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Nattawan Chuchalerm ◽  
Benchawan Wiwatanapataphee ◽  
Wannika Sawangtong

This paper is aimed at presenting thermal slip flow driven by oscillatory pressure gradient in a deformable microchannel of elliptic cross-section. The fully developed flow of Newtonian fluid is considered, and Navier slip is applied on the boundary. The boundary value problem is formulated and applied to the coronary blood flow-heat transfer phenomenon during thermotherapy treatment. Its semianalytical solutions of velocity and temperature fields are carried out by the Ritz method. The effects of oscillatory wall and slip length on velocity and temperature fields of blood are investigated.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
C. Y. Wang

A modified Ritz method for solving nonuniform slip flow in a duct is applied to the semicircular duct and the isosceles triangular duct. These ducts are important in microfluidics. Detailed flow fields and Poiseuille numbers show the large effects of nonuniform slip. A rare exact solution for the semicircular duct with nonzero slip is also found.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1187-1225 ◽  
Author(s):  
Nicola Massarotti ◽  
Michela Ciccolella ◽  
Gino Cortellessa ◽  
Alessandro Mauro

Purpose – The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered. Design/methodology/approach – A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement. Findings – For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number. Research limitations/implications – A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems. Practical implications – The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility. Originality/value – This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.


1988 ◽  
Vol 110 (2) ◽  
pp. 134-139 ◽  
Author(s):  
M. A. Ortega ◽  
J. T. Sielawa

The thermally induced flow field, in a rapidly rotating container consisting of a pair of coaxial cylinders bounded on the top and bottom by horizontal end plates, is considered. The top plate is heated and the bottom plate is cooled, both by small amounts, so that the thermal Rossby number is small, and the cylinders are supposed to be conductive. The induced velocity and temperature fields are determined by subdivision of the flow field; the equation for the central part, the inner core, is solved numerically as well as analytically.


1999 ◽  
Author(s):  
Marcelo J. S. de Lemos ◽  
Maximilian S. Mesquita

Abstract The present work investigates the efficiency of the multigrid numerical method applied to solve two-dimensional laminar velocity and temperature fields inside a rectangular domain. Numerical analysis is based on the finite volume discretization scheme applied to structured orthogonal regular meshes. Performance of the correction storage (CS) multigrid algorithm is compared for different inlet Reynolds number (Rein) and number of grids. Up to four grids were used for both V- and W-cycles. Simultaneous and uncoupled temperature-velocity solution schemes were also applied. Advantages in using more than one grid is discussed. Results further indicate an increase in the computational effort for higher Rein and an optimal number of relaxation sweeps for both V- and W-cycles.


2001 ◽  
Author(s):  
H. Gunes ◽  
K. Gocmen ◽  
L. Kavurmacioglu

Abstract The two-dimensional incompressible non-isothermal confined twin-jet flow has been numerically studied in the transitional flow regime by a finite volume technique. Results have been obtained for the velocity and temperature distributions close to the onset of temporal oscillations. Next, the proper orthogonal decomposition (POD) is applied to the instantaneous flow and temperature data to obtain POD-based basis functions for both velocity and temperature fields. These basis functions are capable to identify the coherent structures in the velocity and temperature fields. The low-dimensional Galerkin models of the full Navier-Stokes and energy equations are constructed by the Galerkin projection onto basis functions. Since the low-dimensional Galerkin models are much easier to analyze than the full governing equations, basic insights into important mechanisms of dynamically complex flow and heat transfer (e.g. flow instabilities) can be easily studied by these models. The numerical implications, the validity of the models and their performance characteristics are discussed.


Author(s):  
Yaqing Liu ◽  
Liancun Zheng ◽  
Xinxin Zhang ◽  
Fenglei Zong

In this paper, we present a circular motion of magnetohydrodynamic (MHD) flow for a heated generalized Oldroyd-B fluid. The fractional calculus approach is introduced to establish the constitutive relationship of a viscoelastic fluid. The velocity and temperature fields of the flow are described by fractional partial differential equations. Exact analytical solutions of velocity and temperature fields are obtained by using Hankel transform and Laplace transform for fractional calculus. Results for ordinary viscous flow are deduced by making the fractional order of differential tend to one and zero. It is shown that the fractional constitutive relation model is more useful than the conventional model for describing the properties of viscoelastic fluid.


2017 ◽  
Vol 828 ◽  
pp. 271-288 ◽  
Author(s):  
Tak Shing Chan ◽  
Joshua D. McGraw ◽  
Thomas Salez ◽  
Ralf Seemann ◽  
Martin Brinkmann

We investigate the dewetting of a droplet on a smooth horizontal solid surface for different slip lengths and equilibrium contact angles. Specifically, we solve for the axisymmetric Stokes flow using the boundary element method with (i) the Navier-slip boundary condition at the solid/liquid boundary and (ii) a time-independent equilibrium contact angle at the contact line. When decreasing the rescaled slip length $\tilde{b}$ with respect to the initial central height of the droplet, the typical non-sphericity of a droplet first increases, reaches a maximum at a characteristic rescaled slip length $\tilde{b}_{m}\approx O(0.1{-}1)$ and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behaviour of the non-sphericity for rescaled slip lengths larger or smaller than $\tilde{b}_{m}$. Around $\tilde{b}_{m}$, the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: elongational flows for $\tilde{b}\gg \tilde{b}_{m}$, friction at the substrate for $\tilde{b}\approx \tilde{b}_{m}$ and shear flows for $\tilde{b}\ll \tilde{b}_{m}$. Following the changes between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when $\tilde{b}$ is many orders of magnitude smaller than $\tilde{b}_{m}$.


Author(s):  
Leiyong Jiang

The flow fields of a combustor cooling wiggle strip and its corresponding simplified slot with conjugate heat transfer have been studied numerically. The effects of geometrical simplification on the flow fields have been analysed qualitatively and quantitatively. It is found that its effects on the flow velocity and temperature fields are limited to local regions near the cooling element, and are negligible in the far field. However, the simplification shows a considerable effect on the combustor liner temperature near the cooling element, about 8.5% of the average temperature across the cooling element. In short, using the simplified slot to replace the cooling wiggle strip in gas turbine combustor modeling is an acceptable practice if accurate liner temperature prediction is not required.


Sign in / Sign up

Export Citation Format

Share Document