convergence proofs
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Esteban Hernández ◽  
Christophe Prieur ◽  
Eduardo Cerpa

<p style='text-indent:20px;'>In this paper the Single Particle Model is used to describe the behavior of a Li-ion battery. The main goal is to design a feedback input current in order to regulate the State of Charge (SOC) to a prescribed reference trajectory. In order to do that, we use the boundary ion concentration as output. First, we measure it directly and then we assume the existence of an appropriate estimator, which has been established in the literature using voltage measurements. By applying backstepping and Lyapunov tools, we are able to build observers and to design output feedback controllers giving a positive answer to the SOC tracking problem. We provide convergence proofs and perform some numerical simulations to illustrate our theoretical results.</p>


2020 ◽  
Author(s):  
Thibaut Sellinger ◽  
Diala Abu Awad ◽  
Aurélien Tellier

AbstractMany methods based on the Sequentially Markovian Coalescent (SMC) have been and are being developed. These methods make use of genome sequence data to uncover population demographic history. More recently, new methods have extended the original theoretical framework, allowing the simultaneous estimation of the demographic history and other biological variables. These methods can be applied to many different species, under different model assumptions, in hopes of unlocking the population/species evolutionary history. Although convergence proofs in particular cases have been given using simulated data, a clear outline of the performance limits of these methods is lacking. We here explore the limits of this methodology, as well as present a tool that can be used to help users quantify what information can be confidently retrieved from given datasets. In addition, we study the consequences for inference accuracy violating the hypotheses and the assumptions of SMC approaches, such as the presence of transposable elements, variable recombination and mutation rates along the sequence and SNP call errors. We also provide a new interpretation of the SMC through the use of the estimated transition matrix and offer recommendations for the most efficient use of these methods under budget constraints, notably through the building of data sets that would be better adapted for the biological question at hand.


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Erin Jaquiery ◽  
Wrick Sengupta

We carry out expansions of non-symmetric toroidal ideal magnetohydrodynamic (MHD) equilibria with nested flux surfaces about a periodic cylinder, in which physical quantities are periodic of period$2\unicode[STIX]{x03C0}$in the cylindrical angle$\unicode[STIX]{x1D703}$and$z$. The cross-section of a flux surface at a constant toroidal angle is assumed to be approximately circular, and data are given on the cylindrical flux surface$r=1$. Furthermore, we assume that the magnetic field lines are closed on the lowest-order flux surface, and the magnetic shear is relatively small. We extend earlier work in a flat torus by Weitzner (Phys. Plasmas, vol. 23, 2016, 062512) and demonstrate that a power series expansion can be carried out to all orders using magnetic flux as an expansion parameter. The cylindrical metric introduces certain new features to the expansions compared to the flat torus. However, the basic methodology of dealing with resonance singularities remains the same. The results, even though lacking convergence proofs, once again support the possibility of smooth, low-shear non-symmetric toroidal MHD equilibria.


2018 ◽  
Vol 64 ◽  
pp. 341-366
Author(s):  
M. D. Buhmann ◽  
R. Fletcher ◽  
A. Iserles ◽  
P. Toint

Michael James David Powell was a British numerical analyst who was among the pioneers of computational mathematics. During a long and distinguished career, first at the Atomic Energy Research Establishment (AERE) Harwell and subsequently as the John Humphrey Plummer Professor of Applied Numerical Analysis in Cambridge, he contributed decisively towards establishing optimization theory as an effective tool of scientific enquiry, replete with highly effective methods and mathematical sophistication. He also made crucial contributions to approximation theory, in particular to the theory of spline functions and of radial basis functions. In a subject that roughly divides into practical designers of algorithms and theoreticians who seek to underpin algorithms with solid mathematical foundations, Mike Powell refused to follow this dichotomy. His achievements span the entire range from difficult and intricate convergence proofs to the design of algorithms and production of software. He was among the leaders of a subject area that is at the nexus of mathematical enquiry and applications throughout science and engineering.


Author(s):  
Luca Becchetti ◽  
Vincenzo Bonifaci ◽  
Michael Dirnberger ◽  
Andreas Karrenbauer ◽  
Kurt Mehlhorn

Sign in / Sign up

Export Citation Format

Share Document