stochastic mortality models
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 2)

Risks ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
Mercedes Ayuso ◽  
Jorge M. Bravo ◽  
Robert Holzmann ◽  
Edward Palmer

Increasing retirement ages in an automatic or scheduled way with increasing life expectancy at retirement is a popular pension policy response to continuous longevity improvements. The question addressed here is: to what extent is simply adopting this approach likely to fulfill the overall goals of policy? To shed some light on the answer, we examine the policies of four countries that have recently introduced automatic indexation of pension ages to life expectancy–The Netherlands, Denmark, Portugal and Slovakia. To this end, we forecast an alternative period and cohort life expectancy measures using a Bayesian Model Ensemble of heterogeneous stochastic mortality models comprised of parametric models, principal component methods, and smoothing approaches. The approach involves both the selection of the model confidence set and the determination of optimal weights. Model-averaged Bayesian credible prediction intervals are derived accounting for various stochastic process, model, and parameter risks. The results show that: (i) retirement ages are forecasted to increase substantially in the coming decades, particularly if a constant period in retirement is targeted; (ii) retirement age policy outcomes may substantially deviate from the policy goal(s) depending on the design adopted and its implementation; and (iii) the choice of a cohort over period life expectancy measure matters. In addition, the distributional issues arising with the increasing socio-economic gap in life expectancy remain largely unaddressed.


Risks ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Daniel H. Alai ◽  
Katja Ignatieva ◽  
Michael Sherris

Stochastic mortality models have been developed for a range of applications from demographic projections to financial management. Financial risk based models built on methods used for interest rates and apply these to mortality rates. They have the advantage of being applied to financial pricing and the management of longevity risk. Olivier and Jeffery (2004) and Smith (2005) proposed a model based on a forward-rate mortality framework with stochastic factors driven by univariate gamma random variables irrespective of age or duration. We assess and further develop this model. We generalize random shocks from a univariate gamma to a univariate Tweedie distribution and allow for the distributions to vary by age. Furthermore, since dependence between ages is an observed characteristic of mortality rate improvements, we formulate a multivariate framework using copulas. We find that dependence increases with age and introduce a suitable covariance structure, one that is related to the notion of ax minimum. The resulting model provides a more realistic basis for capturing the risk of mortality improvements and serves to enhance longevity risk management for pension and insurance funds.


Risks ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 26 ◽  
Author(s):  
Susanna Levantesi ◽  
Virginia Pizzorusso

Estimation of future mortality rates still plays a central role among life insurers in pricing their products and managing longevity risk. In the literature on mortality modeling, a wide number of stochastic models have been proposed, most of them forecasting future mortality rates by extrapolating one or more latent factors. The abundance of proposed models shows that forecasting future mortality from historical trends is non-trivial. Following the idea proposed in Deprez et al. (2017), we use machine learning algorithms, able to catch patterns that are not commonly identifiable, to calibrate a parameter (the machine learning estimator), improving the goodness of fit of standard stochastic mortality models. The machine learning estimator is then forecasted according to the Lee-Carter framework, allowing one to obtain a higher forecasting quality of the standard stochastic models. Out-of sample forecasts are provided to verify the model accuracy.


2019 ◽  
Vol 24 ◽  
Author(s):  
D. Blake ◽  
A. J. G. Cairns ◽  
K. Dowd ◽  
A. R. Kessler

Abstract This paper updates Living with Mortality published in 2006. It describes how the longevity risk transfer market has developed over the intervening period, and, in particular, how insurance-based solutions – buy-outs, buy-ins and longevity insurance – have triumphed over capital markets solutions that were expected to dominate at the time. Some capital markets solutions – longevity-spread bonds, longevity swaps, q-forwards and tail-risk protection – have come to market, but the volume of business has been disappointingly low. The reason for this is that when market participants compare the index-based solutions of the capital markets with the customised solutions of insurance companies in terms of basis risk, credit risk, regulatory capital, collateral and liquidity, the former perform on balance less favourably despite a lower potential cost. We discuss the importance of stochastic mortality models for forecasting future longevity and examine some applications of these models, e.g. determining the longevity risk premium and estimating regulatory capital relief. The longevity risk transfer market is now beginning to recognise that there is insufficient capacity in the insurance and reinsurance industries to deal fully with demand and new solutions for attracting capital markets investors are now being examined – such as longevity-linked securities and reinsurance sidecars.


2017 ◽  
Vol 47 (3) ◽  
pp. 631-679 ◽  
Author(s):  
Andrés M. Villegas ◽  
Steven Haberman ◽  
Vladimir K. Kaishev ◽  
Pietro Millossovich

AbstractLongevity swaps have been one of the major success stories of pension scheme de-risking in recent years. However, with some few exceptions, all of the transactions to date have been bespoke longevity swaps based upon the mortality experience of a portfolio of named lives. In order for this market to start to meet its true potential, solutions will ultimately be needed that provide protection for all types of members, are cost effective for large and smaller schemes, are tradable, and enable access to the wider capital markets. Index-based solutions have the potential to meet this need; however, concerns remain with these solutions. In particular, the basis risk emerging from the potential mismatch between the underlying forces of mortality for the index reference portfolio and the pension fund/annuity book being hedged is the principal issue that has, to date, prevented many schemes progressing their consideration of index-based solutions. Two-population stochastic mortality models offer an alternative to overcome this obstacle as they allow market participants to compare and project the mortality experience for the reference and target populations and thus assess the amount of demographic basis risk involved in an index-based longevity hedge. In this paper, we systematically assess the suitability of several multi-population stochastic mortality models for assessing basis risks and provide guidelines on how to use these models in practical situations paying particular attention to the data requirements for the appropriate calibration and forecasting of such models.


Sign in / Sign up

Export Citation Format

Share Document