separated representation
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Angelo Pasquale ◽  
Amine Ammar ◽  
Antonio Falcó ◽  
Simona Perotto ◽  
Elías Cueto ◽  
...  

AbstractSolutions of partial differential equations can exhibit multiple time scales. Standard discretization techniques are constrained to capture the finest scale to accurately predict the response of the system. In this paper, we provide an alternative route to circumvent prohibitive meshes arising from the necessity of capturing fine-scale behaviors. The proposed methodology is based on a time-separated representation within the standard Proper Generalized Decomposition, where the time coordinate is transformed into a multi-dimensional time through new separated coordinates, each representing one scale, while continuity is ensured in the scale coupling. For instance, when considering two different time scales, the governing Partial Differential Equation is commuted into a nonlinear system that iterates between the so-called microtime and macrotime, so that the time coordinate can be viewed as a 2D time. The macroscale effects are taken into account by means of a finite element-based macro-discretization, whereas the microscale effects are handled with unidimensional parent spaces that are replicated throughout the time domain. The resulting separated representation allows us a very fine time discretization without impacting the computational efficiency. The proposed formulation is explored and numerically verified on thermal and elastodynamic problems.


Author(s):  
Mohammad Javad Kazemzadeh-Parsi ◽  
Amine Ammar ◽  
Jean Louis Duval ◽  
Francisco Chinesta

AbstractSpace separation within the Proper Generalized Decomposition—PGD—rationale allows solving high dimensional problems as a sequence of lower dimensional ones. In our former works, different geometrical transformations were proposed for addressing complex shapes and spatially non-separable domains. Efficient implementation of separated representations needs expressing the domain as a product of characteristic functions involving the different space coordinates. In the case of complex shapes, more sophisticated geometrical transformations are needed to map the complex physical domain into a regular one where computations are performed. This paper aims at proposing a very efficient route for accomplishing such space separation. A NURBS-based geometry representation, usual in computer aided design—CAD—, is retained and combined with a fully separated representation for allying efficiency (ensured by the fully separated representations) and generality (by addressing complex geometries). Some numerical examples are considered to prove the potential of the proposed methodology.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1454
Author(s):  
Abel Sancarlos ◽  
Chady Ghnatios ◽  
Jean-Louis Duval ◽  
Nicolas Zerbib ◽  
Elias Cueto ◽  
...  

A novel Model Order Reduction (MOR) technique is developed to compute high-dimensional parametric solutions for electromagnetic fields in synchronous machines. Specifically, the intrusive version of the Proper Generalized Decomposition (PGD) is employed to simulate a Permanent-Magnet Synchronous Motor (PMSM). The result is a virtual chart allowing real-time evaluation of the magnetic vector potential as a function of the operation point of the motor, or even as a function of constructive parameters, such as the remanent flux in permanent magnets. Currently, these solutions are highly demanded by the industry, especially with the recent developments in the Electric Vehicle (EV). In this framework, standard discretization techniques require highly time-consuming simulations when analyzing, for instance, the noise and vibration in electric motors. The proposed approach is able to construct a virtual chart within a few minutes of off-line simulation, thanks to the use of a fully separated representation in which the solution is written from a series of functions of the space and parameters coordinates, with full space separation made possible by the use of an adapted geometrical mapping. Finally, excellent performances are reported when comparing the reduced-order model with the more standard and computationally costly Finite Element solutions.


2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Flavia Lanzara ◽  
Vladimir Maz’ya ◽  
Gunther Schmidt

AbstractWe propose fast cubature formulas for the elastic and hydrodynamic potentials based on the approximate approximation of the densities with Gaussian and related functions. For densities with separated representation, we derive a tensor product representation of the integral operator which admits efficient cubature procedures. We obtain high order approximations up to a small saturation error, which is negligible in computations. Results of numerical experiments which show approximation order $$\mathscr {O}(h^{2M})$$ O ( h 2 M ) , $$M=1,2,3,4$$ M = 1 , 2 , 3 , 4 , are provided.


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 78
Author(s):  
Claudia Germoso ◽  
Giacomo Quaranta ◽  
Jean Louis Duval ◽  
Francisco Chinesta

Mesh-based solution of 3D models defined in plate or shell domains remains a challenging issue nowadays due to the fact that the needed meshes generally involve too many degrees of freedom. When the considered problem involves some parameters aiming at computing its parametric solution the difficulty is twofold. The authors proposed, in some of their former works, strategies for solving both, however they suffer from a deep intrusiveness. This paper proposes a totally novel approach that from any existing discretization is able to reduce the 3D parametric complexity to the one characteristic of a simple 2D calculation. Thus, the 3D complexity is reduced to 2D, the parameters included naturally into the solution, and the procedure applied on a discretization performed with a standard software, which taken together enable real-time engineering.


Author(s):  
Christophe Audouze ◽  
Prasanth B. Nair

We consider the problem of learning a multivariate function from a set of scattered observations using a sparse low-rank separated representation (SSR) model. The model structure considered here is promising for high-dimensional learning problems; however, existing training algorithms based on alternating least-squares (ALS) are known to have convergence difficulties, particularly when the rank of the model is greater than 1. In the present work, we supplement the model structure with sparsity constraints to ensure the well posedness of the approximation problem. We propose two fast training algorithms to estimate the model parameters: (i) a cyclic coordinate descent algorithm and (ii) a block coordinate descent (BCD) algorithm. While the first algorithm is not provably convergent owing to the non-convexity of the optimization problem, the BCD algorithm guarantees convergence to a Nash equilibrium point. The computational cost of the proposed algorithms is shown to scale linearly with respect to all of the parameters in contrast to methods based on ALS. Numerical studies on synthetic and real-world regression datasets indicate that the proposed SSR model structure holds significant potential for machine learning problems.


2018 ◽  
Vol 210 ◽  
pp. 135-144 ◽  
Author(s):  
G. Quaranta ◽  
B. Bognet ◽  
R. Ibañez ◽  
A. Tramecon ◽  
E. Haug ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 475-500 ◽  
Author(s):  
Alain Cimetiere ◽  
Francisco Chinesta ◽  
Michel Visonneau ◽  
Adrien Leygue ◽  
Guangtao Xu ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 1285-1293 ◽  
Author(s):  
Mohamed Aziz Nasri ◽  
Jose Vicente Aguado ◽  
Amine Ammar ◽  
Elias Cueto ◽  
Francisco Chinesta ◽  
...  

Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new perspectives for an accurate and fast simulation of mechanical systems, however nonlinear history-dependent behaviors remain still today challenging scenarios for the application of these techniques. In this work we are proposing a quite simple non intrusive strategy able to address such behaviors by coupling a separated representation with a POD-based reduced basis within an incremental elastoplastic formulation.


Sign in / Sign up

Export Citation Format

Share Document