intense magnetic field
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
M Angeles Perez-Garcia ◽  
Aurora Perez Martinez ◽  
Elisabeth Rodriguez Querts

Abstract Recent simulations show that very large electric and magnetic fields near the kilo Tesla strength will likely be generated by ultra-intense lasers at existing facilities over distances of hundreds of microns in underdense plasmas. Stronger ones are even expected in the future although some technical dificulties must be overcome. In addition, it has been shown that vacuum exhibits a peculiar non-linear behaviour in presence of high magnetic and electric field strengths. In this work we are interested in the analysis of thermodynamical contributions of vacuum to the energy density and pressure when radiation interacts with it in the presence of an external magnetic field. Using the Euler-Heisenberg formalism in the regime of weak fields i.e. smaller than critical Quantum Electrodynamics field strength values, we evaluate these magnitudes and analyze the highly anisotropic behaviour we find. Our work has implications for photon-photon scattering with lasers and astrophysically magnetized underdense systems far outside their surface where matter effects are increasingly negligible.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6192
Author(s):  
Fernando R. Urgorri ◽  
Ivan Fernández-Berceruelo ◽  
David Rapisarda

The Water Cooled Lithium Lead (WCLL) breeding blanket is one of the driver blanket concepts under development for the European Demonstration Reactor (DEMO). The majority of the blanket volume is occupied by flowing PbLi at eutectic composition. This liquid metal flow is subdued to high fluxes of particles coming from the plasma which are translated into a high non-homogeneous heat volumetric source inside the fluid. The heat is removed from the PbLi thanks to several water tubes immersed in the metal. The dynamics of the PbLi is heavily affected by the heat source and by the position of the tubes. Moreover, the conducting fluid is electrically coupled with the intense magnetic field used for the plasma confinement. As a result, the PbLi flow is strongly affected by the Magnetohydrodynamics (MHD) forces. In the WCLL, the MHD and convective interactions are expected to be comparable. Therefore, the PbLi dynamics and consequently the heat transfer between the liquid metal and the water coolant will be ruled by the magneto-convective phenomenon. This work presents 3D computational analyses of the PbLi flow in the frontal region of the WCLL design. The simulations include the combined effect of MHD forces caused by the magnetic field and the buoyancy interaction created by the temperature distribution. The latter is determined by the PbLi dynamics, the volumetric heat source and the position of the water tubes. Simulations have allowed computing the heat transfer between the PbLi and the water tubes. Nusselt and Grashof numbers have been obtained in the different regions of the system.


Particles ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 660-675 ◽  
Author(s):  
Vivek Baruah Thapa ◽  
Monika Sinha ◽  
Jia Jie Li ◽  
Armen Sedrakian

We construct a new equation of state for the baryonic matter under an intense magnetic field within the framework of covariant density functional theory. The composition of matter includes hyperons as well as Δ-resonances. The extension of the nucleonic functional to the hypernuclear sector is constrained by the experimental data on Λ and Ξ-hypernuclei. We find that the equation of state stiffens with the inclusion of the magnetic field, which increases the maximum mass of neutron star compared to the non-magnetic case. In addition, the strangeness fraction in the matter is enhanced. Several observables, like the Dirac effective mass, particle abundances, etc. show typical oscillatory behavior as a function of the magnetic field and/or density which is traced back to the occupation pattern of Landau levels.


2020 ◽  
Vol 5 ◽  
pp. 43-50
Author(s):  
Ban M. Alameri

Electromagnetic interference in high voltage transmission lines has been an interest topic due to its effect on human health, plants, electrical and telecommunication equipment. Extremely high voltages (EHV) in transmission lines are reasons of electrostatic effects, while short circuit currents and line loading currents are responsible for electromagnetic effects. The aim of this research is to analyze electromagnetic fields in high voltage transmission lines in theoretical study and calculating its level in overhead T. L and therefore estimated the EMI produced, by employing a mathematical model of 230 KV tower double circuit configurations of high voltage transmission lines. The calculation is based on computer aided analysis (CAA) by using fields and corona effects software (FACE). It's found that the overhead power lines of general frequency (50 Hz) generates a highly intense magnetic field, the electromagnetic fields depends on the distance from sources and the type of line configuration. They decrease as the distance increase from the tower and conductors and increase with a high current. The strength of an electric field is proportional to the voltage of the line and the magnetic field strength is proportional to the current in the high voltage transmission lines. Distribution line with a high current load may produce a magnetic field that is as high as those produced by some high voltage transmission lines. Some techniques of reduction of the effects of electromagnetic interference have suggested such as rearrangement conductors of transmission line, and distance from phase conductor and grounding system. The study recommended to keep safety distance operation in high voltage transmission lines with the necessity for engineer to take into account the effect of electromagnetic interference in the design stage of high voltage transmission power system, and to avoid any addition cost may be occur due to neglected effects of electromagnetic interference that produces by high voltage transmission lines


2020 ◽  
Vol 498 (3) ◽  
pp. 4426-4432 ◽  
Author(s):  
Manoel F Sousa ◽  
Jaziel G Coelho ◽  
José C N de Araujo

ABSTRACT In our previous article we have explored the continuous gravitational waves (GWs) emitted from rotating magnetized white dwarfs (WDs) and their detectability by the planned GW detectors such as Laser Interferometer Space Antenna (LISA), Deci-hertz Interferometer Gravitational wave Observatory (DECIGO), and Big Bang Observer (BBO). Here, GWs’ emission due to magnetic deformation mechanism is applied for soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs), described as fast-spinning and magnetized WDs. Such emission is caused by the asymmetry around the rotation axis of the star generated by its own intense magnetic field. Thus, for the first time in the literature, the GW counterparts for SGRs/AXPs are described as WD pulsars. We find that some SGRs/AXPs can be observed by the space detectors BBO and DECIGO. In particular, 1E 1547.0−5408 and SGR 1806−20 could be detected in 1 yr of observation, whereas SGR 1900+14, CXOU J171405.7−381031, Swift J1834.9−0846, SGR 1627−41, PSR J1622−4950, SGR J1745−2900, and SGR 1935+2154 could be observed with a 5-yr observation time. The sources XTE J1810−197, SGR 0501+4516, and 1E 1048.1−5937 could also be seen by BBO and DECIGO if these objects have $M_{\mathrm{ WD}} \lesssim 1.3 \, \mathrm{M}_{\odot }$ and $M_{\mathrm{ WD}} \lesssim 1.2 \, \mathrm{M}_{\odot }$, respectively. We also found that SGRs/AXPs as highly magnetized neutron stars are far below the sensitivity curves of BBO and DECIGO. This result indicates that a possible detection of continuous GWs originated from these objects would corroborate the WD pulsar model.


2020 ◽  
Vol 492 (4) ◽  
pp. 5949-5955 ◽  
Author(s):  
Manoel F Sousa ◽  
Jaziel G Coelho ◽  
José C N de Araujo

ABSTRACT Two mechanisms of gravitational waves (GWs) emission in fast-spinning white dwarfs (WDs) are investigated: accretion of matter and magnetic deformation. In both cases, the GW emission is generated by an asymmetry around the rotation axis of the star. However, in the first case, the asymmetry is due to the amount of accreted matter on the magnetic poles, while in the second case it is due to the intense magnetic field. We have estimated the GW amplitude and luminosity for three binary systems that have a fast-spinning magnetized WD, namely, AE Aquarii, AR Scorpii, and RX J0648.0−4418. We find that, for the first mechanism, the systems AE Aquarii and RX J0648.0−4418 can be observed by the space detectors BBO and DECIGO if they have an amount of accreted mass of δm ≥ 10−5 M⊙. For the second mechanism, the three systems studied require that the WD have a magnetic field above ∼109 G to emit GWs that can be detected by BBO. We also verified that, in both mechanisms, the gravitational luminosity has an irrelevant contribution to the spin-down luminosity of these three systems. Therefore, other mechanisms of energy emission are needed to explain the spin-down of these objects.


Sign in / Sign up

Export Citation Format

Share Document