scholarly journals Vortex cluster arising from an axisymmetric inertial wave attractor

2021 ◽  
Vol 926 ◽  
Author(s):  
S. Boury ◽  
I. Sibgatullin ◽  
E. Ermanyuk ◽  
N. Shmakova ◽  
P. Odier ◽  
...  

We present an experimental and numerical study of the nonlinear dynamics of an inertial wave attractor in an axisymmetric geometrical setting. The rotating ring-shaped fluid domain is delimited by two vertical coaxial cylinders, a conical bottom and a horizontal wave generator at the top: the vertical cross-section is a trapezium, while the horizontal cross-section is a ring. Forcing is introduced via axisymmetric low-amplitude volume-conserving oscillatory motion of the upper lid. The experiment shows an important result: at sufficiently strong forcing and long time scale, a saturated fully nonlinear regime develops as a consequence of an energy transfer draining energy towards a slow two-dimensional manifold represented by a regular polygonal system of axially oriented cyclonic vortices undergoing a slow prograde motion around the inner cylinder. We explore the long-term nonlinear behaviour of the system by performing a series of numerical simulations for a set of fixed forcing amplitudes. This study shows a rich variety of dynamical regimes, including a linear behaviour, a triadic resonance instability, a progressive frequency enrichment reminiscent of weak inertial wave turbulence and the generation of a slow manifold in the form of a polygonal vortex cluster confirming the experimental observation. This vortex cluster is discussed in detail, and we show that it stems from the summation and merging of wave-like components of the vorticity field. The nature of these wave components, the possibility of their detection under general conditions and the ultimate fate of the vortex clusters at even longer time scale remain to be explored.

1995 ◽  
Vol 303 ◽  
pp. 233-252 ◽  
Author(s):  
J. Jonathan Kobine

Results are Presented from an experimental study of fluid in a rotating cylinder which was subjected to precessional forcing. The primary objective was to determine the validity of the linear and inviscid approximations which are commonly adopted in numerical models of the problem. A miniature laser Doppler velocimeter was used to make quantitative measurements of the flow dynamics under a variety of forcing conditions. These ranged from impulsive forcing to continuous forcing at the fundamental resonance of the system. Inertial waves were excited in the fluid in each case, with the extent of nonlinear behaviour increasing from one forcing regime to the next. Good agreement was found with the predictions of linear theory in the weaker forcing regimes. For stronger forcing, it was possible to determine the approximate duration of linear behaviour before the onset of nonlinear dynamics. Viscous effects were found to be relatively weak when the frequency of precessional forcing was away from resonance. However, there was evidence of strong boundary-layer phenomena when conditions of resonance were approached.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2017 ◽  
Vol 824 ◽  
pp. 866-885 ◽  
Author(s):  
Ali Mazloomi Moqaddam ◽  
Shyam S. Chikatamarla ◽  
Iliya V. Karlin

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


1994 ◽  
Vol 09 (18) ◽  
pp. 3229-3244
Author(s):  
K. CHARCHULA ◽  
J. GAJEWSKI

A detailed numerical study of radiative corrections in the low Q2 region at the HERA ep collider was performed. The specific case of the total photoproduction cross section measurement was taken as an example. Two different programs, TERAD91 and HER-ACLES4.2, were used to get an estimate of the size of radiative effects. It was found that radiative corrections can be quite large at some points of the space of leptonic (x, y) variables. However, after imposing experimentally feasible cuts on the radiated photon and the hadronic final state one gets corrections at the level of a few per cent.


2006 ◽  
Vol 3 (3) ◽  
pp. 470-480
Author(s):  
Baghdad Science Journal

This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhanzhan Tang ◽  
Zhixiang He ◽  
Zheng Chen ◽  
Lingkun Chen ◽  
Hanyang Xue ◽  
...  

For an RC beam, the strength of steel rebar, the bonding strength between the concrete and reinforcement, and the bite action between the aggregates will deteriorate significantly due to corrosion. In the present study, 10 RC beams were designed to study the impact of corrosion on the shear bearing capacity. The mechanism of corrosion for stirrups and longitudinal bars and their effects were analyzed. Based on the existing experimental data, the correlation between the stirrup corrosion factor and the cross section loss rate was obtained. An effective prediction formula on the shear bearing capacity of the corroded RC beams was proposed and validated by the experimental results. Moreover, a numerical analysis approach based on the FE technique was proposed for the prediction of the shear strength. The results show that corrosion of the reinforcements could reduce the shear strength of the RC beams. The corrosion of stirrups can be numerically simulated by the reduction of the cross section. The formulae in the literature are conservative and the predictions are very dispersed, while the predictions by the proposed formula agree very well with the experiment results.


Sign in / Sign up

Export Citation Format

Share Document