modal summation
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 26 (1) ◽  
pp. 70-79
Author(s):  
Tong Zhang ◽  
Ludi Kang ◽  
Xin Li ◽  
Hongbo Zhang ◽  
Bilong Liu

When applying the modal summation method to the sound transmission loss (STL) prediction of various plates, the assumption of the blocked sound pressure, or alternatively speaking, ignoring sound radiation terms, has obvious simplicity and is sometimes used for the single-layered panels, rib-stiffened plates or heavily damped sandwich plates. For light-weighted sandwich plates with honeycomb and foam cores, however, this assumption is somewhat in doubt and worth examining. Based on sixth-order differential equations governing the flexural vibration of sandwich plates, the prediction formula of STL is derived by the modal summation approach. Theoretical predictions were validated by measurement data. Next, the theoretical formula of STL under the assumption of the blocked sound pressure was examined. The STL discrepancies of sandwich plates caused by sound radiation terms are illustrated. It was found that the STL discrepancies of sandwich plates were closely related to frequency, reached their peak value at the coincidence frequency region. The results indicate that the sound radiation terms, or the couplings between the radiated sound pressure and the plate response, should not be ignored for the prediction of STL for sandwich plates with honeycomb and foam cores.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Rajendra Kumar Praharaj ◽  
Nabanita Datta ◽  
Mohammed Rabius Sunny

Abstract The dynamic response of fractionally damped viscoelastic plates subjected to a moving point load is investigated. In order to capture the viscoelastic dynamic behavior more accurately, the material is modeled using the fractionally damped Kelvin–Voigt model (rather than the integer-type viscoelastic model). The Riemann–Liouville fractional derivative of order 0 < α ≤ 1 is applied. Galerkin's method and Newton–Raphson technique are used to evaluate the natural frequencies and corresponding damping coefficients. The structure is subject to a moving point load, traveling at different speeds. The modal summation technique is applied to generate the dynamic response of the plate. The influence of the order of the fractional derivative on the free and transient vibrations is studied for different velocities of the moving load. The results are compared with those using the classical integer-type Kelvin–Voigt viscoelastic model. The results show that an increase in the order of the fractional derivative causes a significant decrease in the maximum dynamic amplification factor, especially in the “dynamic zone” of the normalized sweep time. The dynamic behavior of the plate is verified with ansys.


Author(s):  
Irwandi Irwandi ◽  
Yunita Indris ◽  
Muksin ◽  
Khaizal Jamaluddin ◽  
Zulfakriza ◽  
...  
Keyword(s):  

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Dylan C. Fyler ◽  
Murat Inalpolat

In this study, a two-dimensional (2D), steady-state, discrete dynamic model of a double-planet planetary gearset is proposed. The dynamic model is generalized such that it can consist of N number of planet branches and can operate under any operating conditions (load and speed). The contact between each external to external and external to internal gear pair is modeled to obtain stiffnesses and mesh displacement excitations using a generalized load distribution model. The natural modes are computed by solving the corresponding eigenvalue problem. The forced vibration response to gear mesh excitations is obtained by applying the modal summation technique. The model is capable of predicting gear mesh dynamic load and dynamic transmission error spectra for each gear mesh, dynamic bearing load spectra for each bearing as well as gear body dynamic displacements. Forced vibration response of an example system that consists of three double-planet branches is studied to demonstrate the influence of some of the key design parameters.


Author(s):  
Dylan C. Fyler ◽  
Murat Inalpolat

In this study, a two-dimensional, steady-state, discrete dynamic model of a double-planet planetary gearset is proposed. The dynamic model is generalized such that it can consist of number of planet branches and can operate under any operating conditions (load and speed). The contact between each external to external and external to internal gear pair is modeled to obtain stiffnesses and mesh displacement excitations using a generalized load distribution model. The natural modes are computed by solving the corresponding eigenvalue problem. The forced vibration response to gear mesh excitations is obtained by applying the modal summation technique. The model is capable of predicting gear mesh dynamic load and dynamic transmission error spectra for each gear mesh, dynamic bearing load spectra for each bearing as well as gear body dynamic displacements. Forced vibration response of an example system that consists of three double-planet branches is studied to demonstrate the influence of some of the key design parameters.


Sign in / Sign up

Export Citation Format

Share Document