meteoric smoke
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 39 (6) ◽  
pp. 1055-1068
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

Abstract. We investigate if the presence of meteoric smoke particles (MSPs) influences the electron temperature during artificial heating in the D-region. By transferring the energy of powerful high-frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. Artificial heating depends on the height variation of electron density. The presence of MSPs can influence the electron density through charging of MSPs by electrons, which can reduce the number of free electrons and even result in height regions with strongly reduced electron density, so-called electron bite-outs. We simulate the influence of the artificial heating by calculating the intensity of the upward-propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSPs is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSPs, singly positively and singly negatively charged MSPs, and photochemistry such as photoionization and photodetachment. We apply typical ionospheric conditions and find that MSPs can influence both the magnitude and the height profile of the heated electron temperature above 80 km; however, this depends on ionospheric conditions. During night, the presence of MSPs leads to more efficient heating and thus a higher electron temperature above altitudes of 80 km. We found differences of up to 1000 K in electron temperature for calculations with and without MSPs. When MSPs are present, the heated electron temperature decreases more slowly. The presence of MSPs does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSPs and without MSPs is less than 25 K. We also investigate model runs using MSP number density profiles for autumn, summer and winter. The night-time electron temperature is expected to be 280 K hotter in autumn than during winter conditions, while the sunlit D-region is 8 K cooler for autumn MSP conditions than for the summer case, depending on altitude. Finally, an investigation of the electron attachment efficiency to MSPs shows a significant impact on the amount of chargeable dust and consequently on the electron temperature.


2021 ◽  
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

Abstract. We investigate if the presence of meteoric smoke particles (MSP) influences the electron temperature during artfical heating in the D-region. The presence of MSP can result in height regions with reduced electron density, so-called electron bite-outs, due to charging of MSP by electrons. Artificial heating depends on the height variation of electron density. By transferring the energy of powerful high frequency radio waves into thermal energy of electrons, artificial heating increases the electron temperature. We simulate the influence of the artificial heating by calculating the intensity of the upward propagating radio wave. The electron temperature at each height is derived from the balance of radio wave absorption and cooling through elastic and inelastic collisions with neutral species. The influence of MSP is investigated by including results from a one-dimensional height-dependent ionospheric model that includes electrons, positively and negatively charged ions, neutral MSP, singly positively and singly negatively charged MSP and photo chemistry such as photo ionization and photo detachment. We apply typical ionospheric conditions and find that MSP can influence both the magnitude and the height profile of the heated electron temperature above 80 km, however this depends on ionospheric conditions. During night, the presence of MSP leads to more efficient heating, and thus a higher electron temperature, above altitudes of 80 km. We found differences up to 1000 K in temperature for calculations with and without MSP. When MSP are present, the heated electron temperature decreases more slowly. The presence of MSP does not much affect the heating below 80 km for night conditions. For day conditions, the difference between the heated electron temperature with MSP and without MSP is less than 25 K.


2021 ◽  
Vol 21 (11) ◽  
pp. 8735-8745
Author(s):  
Joshua Baptiste ◽  
Connor Williamson ◽  
John Fox ◽  
Anthony J. Stace ◽  
Muhammad Hassan ◽  
...  

Abstract. Agglomeration of charged ice and dust particles in the mesosphere and lower thermosphere is studied using a classical electrostatic approach, which is extended to capture the induced polarisation of surface charge. Collision outcomes are predicted whilst varying the particle size, charge, dielectric constant, relative kinetic energy, collision geometry and the coefficient of restitution. In addition to Coulomb forces acting on particles of opposite charge, instances of attraction between particles of the same sign of charge are discussed. These attractive forces are governed by the polarisation of surface charge and can be strong at very small separation distances. In the mesosphere and lower thermosphere, these interactions could also contribute to the formation of stable aggregates and contamination of ice particles through collisions with meteoric smoke particles.


2021 ◽  
Author(s):  
Mark E. Hervig ◽  
John Maurice Campbell Plane ◽  
David E. Siskind ◽  
Wuhu Feng ◽  
Charles Bardeen ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Simon Chabrillat ◽  
Samuel Remy ◽  
Graham Mann ◽  
Vincent Huijnen ◽  
Zak Kipling ◽  
...  

<p>We present interactive stratospheric aerosol simulations with the ICBG system, a  global tropospheric-stratospheric combined aerosol-chemistry model which is an extension to the ECMWF Integrated Forecasting System (IFS), and is developed as part of the Copernicus Atmosphere Monitoring Service (CAMS). ICBG is the result of the merging of two existing CAMS configurations of the IFS:</p><ul><li>The IFS-GLOMAP tropospheric-stratospheric aerosol microphysics system, which has the GLOMAP-mode aerosol scheme configured for forecast-cycling experiments within the IFS,</li> <li>The IFS-CB05-BASCOE tropospheric (CB05) – stratospheric (BASCOE) chemistry scheme, which is also an established configuration of the IFS within CAMS.</li> </ul><p>During the first phase of CAMS, the stratospheric chemistry scheme IFS-BASCOE was extended to include the stratospheric sulphur chemistry from the UM-UKCA model, with sulphuric acid production rates from IFS-BASCOE passed each timestep to the aerosol scheme IFS-GLOMAP for aerosol particle nucleation and condensation. The aerosol surface area densities (SAD) simulated by IFS-GLOMAP simulated are similarly passed each timestep to the stratospheric chemistry scheme IFS-BASCOE for  heterogeneous reactions. In a recent progression of this strato-tropospheric modelling system, the climatology for meteoric smoke particles (MSP) used in UM-UKCA has also been implemented. Thus the simulated stratospheric aerosol layer comprises not only pure sulphuric particles nucleated homogeneously but also meteoric-sulphuric particles formed from the MSPs.</p><p>We  evaluate the simulated stratosphere aerosol layer in quiescent conditions, comparing it to SAGE-II measurements from the 1998-2002 period. The simulated stratospheric sulfate burden, aerosol extinction, stratospheric aerosol optical depth (sAOD) and surface area density (SAD) agree well with the SAGE-II retrievals. We also show results from ICBG simulations of the volcanic aerosol cloud from a large-magnitude tropical eruption (Pinatubo, June 1991, VEI6) and a medium-magnitude eruption at a northern mid-latitude (Raikoke, June 2019, VEI4).</p>


2021 ◽  
Author(s):  
Margaretha Myrvang ◽  
Carsten Baumann ◽  
Ingrid Mann

<p>Artificial heating increases the electron temperature by transferring the energy of powerful high frequency radio waves into thermal energy of electrons. Current models most likely overestimate the effect of artificial heating in the D-region compared to observations [1, 2]. We investigate if the presence of meteoric smoke particles can explain the discrepancy between observations and model. The ionospheric D-region varies in altitude range from about 50 km to 100 km. In the D-region, the electron density is low, the neutral density is relatively high and it is here that meteors ablate. The ablated meteoric material is believed to recondense to form meteoric smoke particles (MSP). The presence of MSP in the D-region can influence plasma densities through charging of dust by electrons and ions, depending on different ionospheric conditions. Charging of dust influence the electron density mainly through electron attachment to the dust, which results in height regions with less electron density. The heating effect varies with electron density height profile [3], since the reduction in radio wave energy is due to absorption by electrons. We study artificial heating of the D-region and consider MSP by using a one-dimensional ionospheric model [4], which also includes photochemistry. In the ionospheric model, we assume that artificial heating only influences the chemical reactions that depend on electron temperature. We model the electron temperature increase during artificial heating with an electron density calculated from the ionospheric model, where we will do the modelling with and without the MSP and compare day and night condition. Our results show a difference in electron temperature increase with the MSP compared to without the MSP and between day and night condition.</p><p>References:</p><ul><li>[1] Senior, A., M. T. Rietveld, M. J. Kosch and W. Singer (2010): «Diagnosing radio plasma heating in the polar summer mesosphere using cross modulation: Theory and observations». Journal of geophysical research, Vol. 115, A09318.</li> <li>[2] Kero, A., C.-F Enell, Th. Ulich, E. Turunen, M. T. Rietveld and F. H. Honary (2007): «Statistical signature of active D-region HF heating in IRIS riometer data from 1994-2004». Ann. Geophys., 25, 407-415.</li> <li>[3] Kassa, M., O. Havnes and E. Belova (2005): «The effect of electron bite-outs on artificial electron heating and the PMSE overshoot». Annales Geophysicae, 23, 3633-3643.</li> <li>[4] Baumann, C., M. Rapp, A. Kero and C.-F. Enell (2013): «Meteor smoke influence on the D-region charge balance –review of recent in situ measurements and one-dimensional model results». Ann. Geophys., 31, 2049-2062.</li> </ul>


2021 ◽  
Author(s):  
Kamalika Sengupta ◽  
Graham Mann ◽  
Ralf Weigel ◽  
James Brooke ◽  
Sandip Dhomse ◽  
...  

<p>Meteoric smoke particles (MSPs) provide a steady source of condensation nuclei to the Arctic lower stratosphere, with heterogeneous nucleation to sulphuric acid aerosol particles.  Internally mixed meteoric-sulphuric particles likely also play a significant role in the formation of polar stratospheric clouds and thereby influence stratospheric ozone depletion chemistry, particularly in the quiescent stratosphere.</p><p>In several Arctic winter field campaigns (EUPLEX 2002/3, RECONCILE 2009/10, ESSenCe 2010/11),  in-situ stratospheric aerosol particle concentrations measurements were made from the high-altitude Geophysica aircraft, the COPAS instrument measuring total and refractory (non-volatile) particle concentrations at 20 km altitude (see Curtius et al., 2003; Weigel et al., 2014).  </p><p>These measurements are consistent with there being a substantial seasonal source of meteoric-sulphuric particles to the lower Arctic stratosphere, from each year’s influx of MSPs  within the winter-time Arctic polar vortex. In this study we investigate the effect of MSPs on the quiescent Junge layer particle concentration as the polar vortex builds up and after it dissipates. </p><p>We use the nudged configuration of the UM-UKCA stratosphere-troposphere composition-climate model to reproduce the vertical profile of stratospheric particles measured in-situ during the COPAS 2003 campaign. Our model simulates two types of stratospheric aerosol particles - pure sulphuric acid particles and sulphuric acid particles with a MSP-core. We show that the model is able to reproduce the vertical profile of aerosol particles observed during the COPAS measurements in winter 2003.</p><p>Our findings illustrate the influx of MSP and SO2 from higher altitudes through the polar vortex, the winter-time build-up of SO2 triggering homogeneous nucleation of pure sulphuric particles, also with the seasonal source of MSP-core sulphuric particles nucleated heterogeneously. We assess the effects of MSPs on the quiescent period particle concentration in the Arctic during winter through to spring.</p>


2020 ◽  
Author(s):  
Rudraswami N. Gowda ◽  
Mayank Pandey ◽  
Matthew J. Genge ◽  
Dafilgo Fernandes

Abstract. Bioavailable Fe is an essential nutrient for phytoplankton that allows organisms to flourish and drawdown atmospheric CO2 affecting global climatic condition. In marine locales remote from the continents extraterrestrial-dust provides an important source of Fe and thus moderates primary productivity. Here we provide constraints on partitioning of extraterrestrial Fe between seawater and sediments from observations of dissolution and alteration cosmic spherules recovered from the deepsea sediments and Antarctica. Of the ~ 3000–6000 t/a extraterrestrial dust that reaches Earth surface, ~ 2–5 % material survives in marine sediments whilst the remainder is liberated into seawater. Both processes contributes ~ (3–10) × 10−8 molFe m−2 yr−1. Also, Fe contribution due to evaporation of survived particle is estimated to be ~ 10 % of Fe contribution to meteoric smoke. Changes in extraterrestrial-dust flux vary not only the amount of Fe by up to three orders of magnitude, but also the partitioning of Fe between surface and abyssal waters depending on entry velocity and evaporation.


2020 ◽  
Author(s):  
Henriette Trollvik ◽  
Ingrid Mann ◽  
Sveinung Olsen ◽  
Yngve Eilertsen

Abstract. We report and discuss the design of a rocket instrument to collect mesospheric dust particles that are composed of ice and include smaller refractory meteoric smoke particles (MSP). We expect that the ice components melt and that MSP are collected. The instrument consists of a collection device with an opening and closure mechanism and an attached conic funnel. Attaching the funnel increases the sampling area in comparison to the collection area which is kept small since this determines the size of the closure device which is a critical component to be designed for sea recovery. The instrument will collect primary particles that directly hit the collection area and secondary particles that form from mesospheric dust hitting the funnel. We simulate the entry and impact of dust onto the detector considering their trajectories in the airflow and the fragmentation at the funnel. We estimate the collection efficiency of the instrument and the impact energy of particles at the collecting area. The design considered has a sampling area of 5 cm diameter and a collection area of 1.8 cm diameter. To estimate the expected amount of collected dust we assume collection during rocket flight through a 0.5 to 4 km dust layer with dust number densities and dust sizes at 85 km as derived from lidar observations (Kiliani et al., 2015). Assuming the collected particles contain 3 % volume fraction of MSP, we find that the instrument would collect of the order of 1014 to 1015 amu of refractory MSP particles. The estimate basis on the assumption that the ice components are melting and the flow conditions in the instruments are for typical atmospheric pressures at 85 km.


Sign in / Sign up

Export Citation Format

Share Document