scholarly journals Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer

Author(s):  
Francesco Barbano ◽  
Luigi Brogno ◽  
Francesco Tampieri ◽  
Silvana Di Sabatino

AbstractThe presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers.

2014 ◽  
Vol 7 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
D. Li ◽  
Y. Li ◽  
N. Zhang ◽  
...  

Abstract. Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.


2021 ◽  
Author(s):  
Francesco Barbano ◽  
Luigi Brogno ◽  
Francesco Tampieri ◽  
Silvana Di Sabatino

<p>The presence of waves in the nocturnal boundary layer has proven to generate complex interaction with turbulence. On complex terrain environments, where turbulence is observed in a weak but continuous state of activity, waves can be a vehicle of additional production/loss of turbulence energy. The common approach based on the Reynolds decomposition is unable to disaggregate turbulence and wave motion, thus revealing impaired to explicit the terms of this additional interaction. In the current investigation, we adopt a triple-decomposition approach to separate mean, wave, and turbulence motions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. This investigation reveals that the waves contribute to the kinetic energy budget where the production is not shear-dominated and the budget equation does not reduce to a shear-dissipation balance (e.g., as it occurs close to a surface). Away from the surface, the buoyancy effects associated with the wave motion become a significant factor in generating a three-terms balance (shear-buoyancy-dissipation). Similar effects can be found in the potential energy budget, as the waves affect for instance the production associated with the vertical heat flux. On this basis, we develop a simple interpretation paradigm to distinguish two layers, namely near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm and evaluate the explicit contributions of the wave motion on the turbulence kinetic and potential energies, we investigate a nocturnal valley flow observed under weak synoptic forcing in the Dugway Valley (Utah) during the MATERHORN Program. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance-covariance analysis to further comprehend the balance of energy production/loss in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers.</p>


2011 ◽  
Vol 139 (10) ◽  
pp. 3139-3162 ◽  
Author(s):  
Christopher J. Nowotarski ◽  
Paul M. Markowski ◽  
Yvette P. Richardson

Abstract This paper uses idealized numerical simulations to investigate the dynamical influences of stable boundary layers on the morphology of supercell thunderstorms, especially the development of low-level rotation. Simulations are initialized in a horizontally homogeneous environment with a surface-based stable layer similar to that found within a nocturnal boundary layer or a mesoscale cold pool. The depth and lapse rate of the imposed stable boundary layer, which together control the convective inhibition (CIN), are varied in a suite of experiments. When compared with a control simulation having little surface-based CIN, each supercell simulated in an environment having a stable boundary layer develops weaker rotation, updrafts, and downdrafts at low levels; in general, low-level vertical vorticity and vertical velocity magnitude decrease as initial CIN increases (changes in CIN are due only to variations in the imposed stable boundary layer). Though the presence of a stable boundary layer decreases low-level updraft strength, all supercells except those initiated over the most stable boundary layers had at least some updraft parcels with near-surface origins. Furthermore, the existence of a stable boundary layer only prohibits downdraft parcels from reaching the lowest grid level in the most stable cases. Trajectory and circulation analyses indicate that weaker near-surface rotation in the stable-layer scenarios is a result of the decreased generation of circulation coupled with decreased convergence of the near-surface circulation by weaker low-level updrafts. These results may also suggest a reason why tornadogenesis is less likely to occur in so-called elevated supercell thunderstorms than in surface-based supercells.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Author(s):  
Ahmad Sana ◽  
Hitoshi Tanaka

A number of studies on bottom boundary layers under sinusoidal and cnoidal waves were carried out in the past owing to the role of bottom shear stress on coastal sediment movement. In recent years, the bottom boundary layers under long waves have attracted considerable attention due to the occurrence of huge tsunamis and corresponding sediment movement. In the present study two-equation turbulent models proposed by Menter(1994) have been applied to a bottom boundary layer under solitary waves. A comparison has been made for cross-stream velocity profile and other turbulence properties in x-direction.


Author(s):  
Marcio Cataldi ◽  
Juliana B. R. Loureiro ◽  
Atila P. Silva Freire

The objective of this work is to develop, in a wind tunnel environment, boundary layers with different states of development that simulate the structure present in the atmospheric boundary layer. The work analyses the dymamic and thermal characteristics of different types of thick, artificially-generated, turbulent boundary layers. The thermal boundary layer is obtained by two methods: wall surface heating, made through electrical resistance, can furnish an increase in wall temperature of up to 100 °C above the ambient temparatures and can be applied over a 5000 mm long surface with a controlled variation of 2 °C. The main flow heating is obtained by forcing the flow pass through an array of copper wires whose elements can be heated individually. The main flow can be heated up to 100 °C. The whole system can then be used to produce unstable, neutral and stable boundary layers. The parameters of the thermal boundary layers are qualified according to the following parameters: growth, structure, equilibrium, turbulent transport of heat and energy spectrum. The paper describes in detail the experimental arrangements, including the geometry of the wind tunnel and the instrumentation.


Author(s):  
B S Knight ◽  
J H Davies ◽  
F A Capitanio

Summary The relatively short duration of the early stages of subduction results in a poor geological record, limiting our understanding of this critical stage. Here, we utilize a 2D numerical model of incipient subduction, that is the stage after a plate margin has formed with a slab tip that extends to a shallow depth and address the conditions under which subduction continues or fails. We assess energy budgets during the evolution from incipient subduction to either a failed or successful state, showing how the growth of potential energy, and slab pull, is resisted by the viscous dissipation within the lithosphere and the mantle. The role of rheology is also investigated, as deformation mechanisms operating in the crust and mantle facilitate subduction. In all models, the onset of subduction is characterized by high lithospheric viscous dissipation and low convergence velocities, whilst successful subduction sees the mantle become the main area of viscous dissipation. In contrast, failed subduction is defined by the lithospheric viscous dissipation exceeding the lithospheric potential energy release rate and velocities tend towards zero. We show that development of a subduction zone depends on the convergence rate, required to overcome thermal diffusion and to localise deformation along the margin. The results propose a minimum convergence rate of ∼ 0.5 cm yr−1 is required to reach a successful state, with 100 km of convergence over 20 Myr, emphasizing the critical role of the incipient stage.


Sign in / Sign up

Export Citation Format

Share Document