Magnetic Microspheres
Recently Published Documents





Kierstin P. Melo ◽  
Ashley V. Makela ◽  
Natasha N. Knier ◽  
Amanda M. Hamilton ◽  
Paula J. Foster

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Donatien Mottin ◽  
Tsaihsing Martin Ho ◽  
Peichun Amy Tsai

Purpose Monodisperse microfluidic emulsions – droplets in another immiscible liquid – are beneficial to various technological applications in analytical chemistry, material and chemical engineering, biology and medicine. Upscaling the mass production of micron-sized monodisperse emulsions, however, has been a challenge because of the complexity and technical difficulty of fabricating or upscaling three-dimensional (3 D) microfluidic structures on a chip. Therefore, the authors develop a fluid dynamical design that uses a standard and straightforward 3 D printer for the mass production of monodisperse droplets. Design/methodology/approach The authors combine additive manufacturing, fluid dynamical design and suitable surface treatment to create an easy-to-fabricate device for the upscaling production of monodisperse emulsions. Considering hydrodynamic networks and associated flow resistance, the authors adapt microfluidic flow-focusing junctions to produce (water-in-oil) emulsions in parallel in one integrated fluidic device, under suitable flow rates and channel sizes. Findings The device consists of 32 droplet-makers in parallel and is capable of mass-producing 14 L/day of monodisperse emulsions. This convenient method can produce 50,000 millimetric droplets per hour. Finally, the authors extend the current 3 D printed fluidics with the generated emulsions to synthesize magnetic microspheres. Originality/value Combining additive manufacturing and hydrodynamical concepts and designs, the authors experimentally demonstrate a facile method of upscaling the production of useful monodisperse emulsions. The design and approach will be beneficial for mass productions of smart and functional microfluidic materials useful in a myriad of applications.

Qingqing Wu ◽  
Chen Hang ◽  
Ting Li ◽  
Binrong Wang ◽  
Yuan Qin ◽  

Seonghwi An ◽  
Shanmugam Manivannan ◽  
Mayavan Viji ◽  
Min Suk Shim ◽  
Byeong Hee Hwang ◽  

2021 ◽  
Vol 11 (2-S) ◽  
pp. 156-161
Hans Raj ◽  
Shagun Sharma ◽  
Ankita Sharma ◽  
Kapil Kumar Verma ◽  
Amit Chaudhary

Microspheres are multiparticulate drug delivery systems that are designed to deliver drugs to a particular location at a fixed rate. Microspheres are free-flowing powders made up of biodegradable proteins or synthetic polymers with particle sizes ranging from 1 to 1000µm. Benefits of the use of microspheres in fields such as drug delivery, bone tissue manufacturing, and the absorption and desorption of contaminants by regeneration. The study shows the method of planning and measurement of microsphere parameters. Microspheres are complex, such as bioadhesive microspheres, polymeric microspheres, magnetic microspheres, floating microspheres, radioactive microspheres. Microspheres may be used in various fields such as cosmetics, oral drug delivery, target drug delivery, ophthalmic drug delivery, gene delivery, and others listed in the study. In order to achieve optimal therapeutic effectiveness, it is important to deliver the agent to the target tissue at an optimum level within the right timeframe, resulting in little toxicity and minimal side effects. There are different approaches to supplying the medicinal drug to the target site in a continuous managed manner. One such strategy is the use of microspheres as drug carriers. In this article, the value of the microsphere is seen as a novel drug delivery carrier to achieve site-specific drug delivery was discussed. Keywords: microspheres, method of preparations, polymer, bioadhesion, types of microspheres

2021 ◽  
pp. 118013
Thalia S.A. Lemos ◽  
Jaqueline F. de Souza ◽  
André R. Fajardo

Sign in / Sign up

Export Citation Format

Share Document