stream migration
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Priyanka Sharan ◽  
Zuyao Xiao ◽  
Viviana Mancuso ◽  
William E. Uspal ◽  
Juliane Simmchen

Fluid flow is ubiquitous in many environments that form habitats for microorganisms. The tendency of organisms to navigate towards or away from flow is termed rheotaxis. Therefore, it is not surprising that both biological and artificial microswimmers show responses to flows that are determined by the interplay of chemical and physical factors. In particular, to deepen understanding of how different systems respond to flows, it is crucial to comprehend the influence played by swimming pattern. In recent studies, pusher-type Janus particles exhibited cross-stream migration in externally applied flows. Earlier, theoretical studies predicted a positive rheotactic response for puller-type spherical Janus micromotors. To compare to a different swimmer, we introduce Cu@SiO2 micromotors that swim towards their catalytic cap. Based on experimental observations, and supported by flow field calculations using a model for self-electrophoresis, we hypothesize that they behave effectively as a puller-type system. We investigate the effect of externally imposed flow on these spherically symmetrical Cu@SiO2 active Janus colloids, and we indeedobserve a steady upstream directional response. Through a simple squirmer model for a puller, we recover the major experimental observations. Additionally, the model predicts a unique “jumping” behaviour for puller-type micro- motors at high flow speeds. Performing additional experiments at high flow speeds, we capture this phenomenon, in which the particles “roll” with their swimming axes aligned to the shear plane, in addition to being dragged down- stream by the fluid flow.


2021 ◽  
Vol 929 ◽  
Author(s):  
Saman Ebrahimi ◽  
Prosenjit Bagchi

A computational study is presented on cross-stream migration and focusing of deformable capsules in curved microchannels of square and rectangular sections under inertial and non-inertial regimes. The numerical methodology is based on immersed boundary methods for fluid–structure coupling, a finite-volume-based flow solver and finite-element method for capsule deformation. Different focusing behaviours in the two regimes are predicted that arise due to the interplay of inertia, deformation, altered shear gradient, streamline curvature effect and secondary flow. In the non-inertial regime, a single-point focusing occurs on the central plane, and at a radial location between the interior face (i.e. face with highest curvature) of the channel and the location of zero shear. The focusing position is nearly independent of capsule deformability (represented by the capillary number, $Ca$ ). A two-step migration is observed that is comprised of a faster radial migration, followed by a slower migration toward the centre plane. The focusing location progressively moves further toward the interior face with increasing curvature and width, but decreasing height. In the inertial regime, single-point focusing is observed near the interior face for channel Reynolds number $Re_{C}\sim {O}(1)$ , that is also highly sensitive to $Re_{C}$ and $Ca$ , and moves progressively toward the exterior face with increasing $Re_{C}$ but decreasing $Ca$ . As $Re_{C}$ increases by an order, secondary flow becomes stronger, and two focusing locations appear close to the centres of the Dean vortices. This location becomes practically independent of $Ca$ at even higher inertia. The inertial focusing positions move progressively toward the exterior face with increasing channel width and decreasing height. For wider channels, the equilibrium location is further toward the exterior face than the vortex centre.


2020 ◽  
Vol 53 (22) ◽  
pp. 9993-10004
Author(s):  
Aiqing Liu ◽  
Zhenyue Yang ◽  
Lijun Liu ◽  
Jizhong Chen ◽  
Lijia An

2019 ◽  
Vol 31 (11) ◽  
pp. 112003 ◽  
Author(s):  
U. Banerjee ◽  
C. Mandal ◽  
S. K. Jain ◽  
A. K. Sen
Keyword(s):  

Soft Matter ◽  
2019 ◽  
Vol 15 (15) ◽  
pp. 3168-3178 ◽  
Author(s):  
Michael P. Howard ◽  
Thomas M. Truskett ◽  
Arash Nikoubashman

Dilute polymer solutions under pressure-driven flow can drive cross-stream migration of a small Brownian droplet to the centerline of a planar microchannel.


Sign in / Sign up

Export Citation Format

Share Document