scholarly journals Optimization of Dynamic Task Location within a Manipulator’s Workspace for the Utilization of the Minimum Required Joint Torques

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 288
Author(s):  
Adam Wolniakowski ◽  
Charalampos Valsamos ◽  
Kanstantsin Miatliuk ◽  
Vassilis Moulianitis ◽  
Nikos Aspragathos

The determination of the optimal position of a robotic task within a manipulator’s workspace is crucial for the manipulator to achieve high performance regarding selected aspects of its operation. In this paper, a method for determining the optimal task placement for a serial manipulator is presented, so that the required joint torques are minimized. The task considered comprises the exercise of a given force in a given direction along a 3D path followed by the end effector. Given that many such tasks are usually conducted by human workers and as such the utilized trajectories are quite complex to model, a Human Robot Interaction (HRI) approach was chosen to define the task, where the robot is taught the task trajectory by a human operator. Furthermore, the presented method considers the singular free paths of the manipulator’s end-effector motion in the configuration space. Simulation results are utilized to set up a physical execution of the task in the optimal derived position within a UR-3 manipulator’s workspace. For reference the task is also placed at an arbitrary “bad” location in order to validate the simulation results. Experimental results verify that the positioning of the task at the optimal location derived by the presented method allows for the task execution with minimum joint torques as opposed to the arbitrary position.

2011 ◽  
Vol 48-49 ◽  
pp. 589-592 ◽  
Author(s):  
Shi Xiang Tian ◽  
Sheng Ze Wang

In this paper, a novel hybrid position/force controller has been proposed for a three degree of freedom (3-DOF) of robot trajectory following that is required to switch between position and force control. The whole controller consists of two components: a positional controller and a force controller. Depending on whether the end-effector is in free space or in contact with the environments during work, the two subcontrollers run simultaneously to guide the manipulator tracking in free space and constraint environments. After the principle and stability of the controller are briefly analyzed, simulation results verify that the proposed controller attains a high performance.


Author(s):  
H. H. Tan ◽  
R. B. Potts

AbstractAn interesting and challenging problem in robotics is the off-line determination of the minimum cost path along which an end effector should move from a given initial to a given final state. This paper presents a discrete minimum cost path/trajectory planner which provides a general solution and allows for a range of constraints such as bounds on joint coordinates, joint velocities, joint torques and joint jerks. To demonstrate the practicability and feasibility of the planner, simulation results are presented for the Stanford manipulator using three and then the full six of its degrees of freedom. Simulation runs with two-link planar arms are also presented to enable a comparison with previously published results.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2715
Author(s):  
Ruth Yadira Vidana Morales ◽  
Susana Ortega Cisneros ◽  
Jose Rodrigo Camacho Perez ◽  
Federico Sandoval Ibarra ◽  
Ricardo Casas Carrillo

This work illustrates the analysis of Film Bulk Acoustic Resonators (FBAR) using 3D Finite Element (FEM) simulations with the software OnScale in order to predict and improve resonator performance and quality before manufacturing. This kind of analysis minimizes manufacturing cycles by reducing design time with 3D simulations running on High-Performance Computing (HPC) cloud services. It also enables the identification of manufacturing effects on device performance. The simulation results are compared and validated with a manufactured FBAR device, previously reported, to further highlight the usefulness and advantages of the 3D simulations-based design process. In the 3D simulation results, some analysis challenges, like boundary condition definitions, mesh tuning, loss source tracing, and device quality estimations, were studied. Hence, it is possible to highlight that modern FEM solvers, like OnScale enable unprecedented FBAR analysis and design optimization.


Robotica ◽  
2020 ◽  
pp. 1-26
Author(s):  
Tao Xue ◽  
ZiWei Wang ◽  
Tao Zhang ◽  
Ou Bai ◽  
Meng Zhang ◽  
...  

SUMMARY Accurate torque control is a critical issue in the compliant human–robot interaction scenario, which is, however, challenging due to the ever-changing human intentions, input delay, and various disturbances. Even worse, the performances of existing control strategies are limited on account of the compromise between precision and stability. To this end, this paper presents a novel high-performance torque control scheme without compromise. In this scheme, a new nonlinear disturbance observer incorporated with equivalent control concept is proposed, where the faster convergence and stronger anti-noise capability can be obtained simultaneously. Meanwhile, a continuous fractional power control law is designed with an iteration method to address the matched/unmatched disturbance rejection and global finite-time convergence. Moreover, the finite-time stability proof and prescribed control performance are guaranteed using constructed Lyapunov function with adding power integrator technique. Both the simulation and experiments demonstrate enhanced control accuracy, faster convergence rate, perfect disturbance rejection capability, and stronger robustness of the proposed control scheme. Furthermore, the evaluated assistance effects present improved gait patterns and reduced muscle efforts during walking and upstair activity.


2012 ◽  
Vol 542-543 ◽  
pp. 769-774
Author(s):  
Qun Ling Yu ◽  
Na Bai ◽  
Yan Zhou ◽  
Rui Xing Li ◽  
Jun Ning Chen ◽  
...  

A new technique for reducing the offset of latch-type sense amplifier has been proposed and effect of enable signal voltage upon latch-type sense amplifier offset in SRAM has been investigated in this paper. Circuit simulation results on both StrongARM and Double-tail topologies show that the standard deviation of offset can be reduced by 31.23% (StrongARM SA) and 25.2% (Double-tail SA) , respectively, when the voltage of enable signal reaches 0.6V in TSMC 65nm CMOS technology. For a column of bit-cell (1024 bit-cell), the total speed is improved by 14.98% (StrongARAM SA) and 22.26% (Double-tail SA) at the optimal operation point separately, and the total energy dissipation is reduced by 30.45% and 29.47% with this scheme.


Author(s):  
Yanxia Li ◽  
Zhongliang Liu ◽  
Yan Wang ◽  
Jiaming Liu

A numerical model on methane/air combustion inside a small Swiss-roll combustor was set up to investigate the flame position of small-scale combustion. The simulation results show that the combustion flame could be maintained in the central area of the combustor only when the speed and equivalence ratio are all within a narrow and specific range. For high inlet velocity, the combustion could be sustained stably even with a very lean fuel and the flame always stayed at the first corner of reactant channel because of the strong convection heat transfer and preheating. For low inlet velocity, small amounts of fuel could combust stably in the central area of the combustor, because heat was appropriately transferred from the gas to the inlet mixture. Whereas, for the low premixed gas flow, only in certain conditions (Φ = 0.8 ~ 1.2 when ν0 = 1.0m/s, Φ = 1.0 when ν0 = 0.5m/s) the small-scale combustion could be maintained.


Author(s):  
Meiying Zhang ◽  
Thierry Laliberté ◽  
Clément Gosselin

This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human-robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.


Sign in / Sign up

Export Citation Format

Share Document