circulating antigen
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 12)

H-INDEX

37
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Taryn Louise Osmond

<p>Splenic CD8α⁺ dendritic cells (DCs) have been described as key antigen presenting cells for the induction of CD8⁺ T cell responses to circulating antigen. This is through a heightened capacity to acquire and present the antigens via the process of cross-presentation, expression of high levels of the co-stimulatory and adhesion molecules required to stimulate CD8⁺ T cells, and the capacity to release high levels of the cytokines required to drive differentiation of CD8⁺ T cells into cytotoxic T lymphocytes (CTLs). However, recent research has indicated that the splenic CD8α⁺ DC population is more heterogeneous than originally thought. A previous study from my own laboratory suggested that a population of CD8α⁺ DCs that express the c-type lectin langerin primarily possess the heightened functions previously attributed to the total CD8α⁺ population. Therefore, the aim of this thesis research was to explore this subset of DCs in more detail, with specific emphasis on gaining mechanistic insight into their ability to elicit CD8⁺ T cell responses to circulating proteins. In the first section of this thesis, the hypothesis that the splenic langerin⁺ CD8α⁺ DCs were the critical subset involved in the induction of strong systemic CD8⁺ T cell responses to circulating antigen was tested in detail. This was examined using a genetically modified mouse model in which langerin-expressing cells could be easily identified and/or specifically depleted. It was first shown that the induction of CD8⁺ T cell responses to the model antigen ovalbumin was dependent on entry into the spleen in the presence of appropriate stimulation, which in these studies was provided by agonists for the toll-like receptors (TLRs) and/or signals from innate-like lymphocytes called natural killer T (NKT) cells. The primary targets for these signals were shown to be splenic langerin⁺ CD8α⁺ DCs, as CD8⁺ T cell responses were significantly reduced in hosts depleted of these cells within the spleen. Furthermore, agonists for TLRs that were not expressed by langerin⁺ CD8α⁺ DCs failed to enhance T cell responses. The langerin⁺ CD8α⁺ DCs were shown to be located in the marginal zone of the spleen, where they could readily screen the blood for antigens, and their function was critical to the induction of CD8⁺ T cell responses within six hours of antigen delivery. Interestingly, other local langerin-negative antigen presenting cells (APCs) were shown to be capable of cross-presentation, but with significantly reduced capacity to prime CD8⁺ T cell responses. Therefore, in the second section of this thesis the hypothesis that the langerin-negative APCs were capable of contributing to CD8⁺ T cell responses with appropriately timed stimuli was investigated. One of the downstream effects of inducing NKT cell activation at the time of priming was shown to be the “pre-conditioning” of langerin-negative DCs, allowing them to respond strongly to subsequent TLR ligation. Using SiglecH-DTR mice, it was shown that plasmacytoid DCs (which are langerin-negative) were pre-conditioned by NKT cell activation, allowing them to respond more actively to the delayed TLR stimulation by producing significantly enhanced levels of IFN-α. This factor was also potentially responsible for “feeding back” to the CD8α⁺ DCs (including langerin-expressing CD8α⁺ DCs), to enhance their function, as indicated by increases in cytokine production. Significantly, the major langerin-negative DC populations, defined as CD8α⁻ DCs, were pre-conditioned to have an enhanced cytokine release response to subsequent stimulation through TLR7, a receptor not expressed by langerin-positive DCs. This enhanced ability to respond to TLR7 ligation permitted these langerin-negative APCs to contribute to increased CD8⁺ T cell accumulation, with enhanced functional activity. Importantly, the CD8⁺ T cell response induced remained significantly dependent on initial cross-priming by langerin⁺ CD8α⁺ DCs, and it was only through pre-conditioning that langerinnegative APCs could contribute to enhancing the T cell response. In the third section of this thesis, the hypothesis that the CD8⁺ T cell responses generated in the presence of langerin⁺ CD8α⁺ DCs were phenotypically and functionally distinct from those responses generated in their absence was tested. No obvious differences were seen in CD8⁺ T cell homing, memory phenotype, restimulatory capacity, and expression of key molecules involved in metabolic function, survival and cytolytic function. However, in vivo cytotoxic function several weeks after priming was comparable, suggesting that this function was not related to initial burst size, providing some evidence of difference in function between CD8⁺ T cells primed in the presence or absence of langerin⁺ CD8α⁺ DCs. In summary, the splenic langerin⁺ CD8α⁺ DCs are the major subset responsible for cross-priming CD8⁺ T cell responses to circulating antigen, and for interpreting multiple stimulatory signals for enhancing the response. However, effective CD8⁺ T cell responses can be generated in their absence, particularly when antigens are provided in the context of appropriately temporally phased stimuli.</p>


2021 ◽  
Author(s):  
◽  
Taryn Louise Osmond

<p>Splenic CD8α⁺ dendritic cells (DCs) have been described as key antigen presenting cells for the induction of CD8⁺ T cell responses to circulating antigen. This is through a heightened capacity to acquire and present the antigens via the process of cross-presentation, expression of high levels of the co-stimulatory and adhesion molecules required to stimulate CD8⁺ T cells, and the capacity to release high levels of the cytokines required to drive differentiation of CD8⁺ T cells into cytotoxic T lymphocytes (CTLs). However, recent research has indicated that the splenic CD8α⁺ DC population is more heterogeneous than originally thought. A previous study from my own laboratory suggested that a population of CD8α⁺ DCs that express the c-type lectin langerin primarily possess the heightened functions previously attributed to the total CD8α⁺ population. Therefore, the aim of this thesis research was to explore this subset of DCs in more detail, with specific emphasis on gaining mechanistic insight into their ability to elicit CD8⁺ T cell responses to circulating proteins. In the first section of this thesis, the hypothesis that the splenic langerin⁺ CD8α⁺ DCs were the critical subset involved in the induction of strong systemic CD8⁺ T cell responses to circulating antigen was tested in detail. This was examined using a genetically modified mouse model in which langerin-expressing cells could be easily identified and/or specifically depleted. It was first shown that the induction of CD8⁺ T cell responses to the model antigen ovalbumin was dependent on entry into the spleen in the presence of appropriate stimulation, which in these studies was provided by agonists for the toll-like receptors (TLRs) and/or signals from innate-like lymphocytes called natural killer T (NKT) cells. The primary targets for these signals were shown to be splenic langerin⁺ CD8α⁺ DCs, as CD8⁺ T cell responses were significantly reduced in hosts depleted of these cells within the spleen. Furthermore, agonists for TLRs that were not expressed by langerin⁺ CD8α⁺ DCs failed to enhance T cell responses. The langerin⁺ CD8α⁺ DCs were shown to be located in the marginal zone of the spleen, where they could readily screen the blood for antigens, and their function was critical to the induction of CD8⁺ T cell responses within six hours of antigen delivery. Interestingly, other local langerin-negative antigen presenting cells (APCs) were shown to be capable of cross-presentation, but with significantly reduced capacity to prime CD8⁺ T cell responses. Therefore, in the second section of this thesis the hypothesis that the langerin-negative APCs were capable of contributing to CD8⁺ T cell responses with appropriately timed stimuli was investigated. One of the downstream effects of inducing NKT cell activation at the time of priming was shown to be the “pre-conditioning” of langerin-negative DCs, allowing them to respond strongly to subsequent TLR ligation. Using SiglecH-DTR mice, it was shown that plasmacytoid DCs (which are langerin-negative) were pre-conditioned by NKT cell activation, allowing them to respond more actively to the delayed TLR stimulation by producing significantly enhanced levels of IFN-α. This factor was also potentially responsible for “feeding back” to the CD8α⁺ DCs (including langerin-expressing CD8α⁺ DCs), to enhance their function, as indicated by increases in cytokine production. Significantly, the major langerin-negative DC populations, defined as CD8α⁻ DCs, were pre-conditioned to have an enhanced cytokine release response to subsequent stimulation through TLR7, a receptor not expressed by langerin-positive DCs. This enhanced ability to respond to TLR7 ligation permitted these langerin-negative APCs to contribute to increased CD8⁺ T cell accumulation, with enhanced functional activity. Importantly, the CD8⁺ T cell response induced remained significantly dependent on initial cross-priming by langerin⁺ CD8α⁺ DCs, and it was only through pre-conditioning that langerinnegative APCs could contribute to enhancing the T cell response. In the third section of this thesis, the hypothesis that the CD8⁺ T cell responses generated in the presence of langerin⁺ CD8α⁺ DCs were phenotypically and functionally distinct from those responses generated in their absence was tested. No obvious differences were seen in CD8⁺ T cell homing, memory phenotype, restimulatory capacity, and expression of key molecules involved in metabolic function, survival and cytolytic function. However, in vivo cytotoxic function several weeks after priming was comparable, suggesting that this function was not related to initial burst size, providing some evidence of difference in function between CD8⁺ T cells primed in the presence or absence of langerin⁺ CD8α⁺ DCs. In summary, the splenic langerin⁺ CD8α⁺ DCs are the major subset responsible for cross-priming CD8⁺ T cell responses to circulating antigen, and for interpreting multiple stimulatory signals for enhancing the response. However, effective CD8⁺ T cell responses can be generated in their absence, particularly when antigens are provided in the context of appropriately temporally phased stimuli.</p>


Author(s):  
Nicholas Ngwili ◽  
Lian Thomas ◽  
Samuel Githigia ◽  
Dishon Muloi ◽  
Karen Marshall ◽  
...  

AbstractA study was carried out in Kamuli and Hoima districts in Eastern and Western regions of Uganda to determine the Taenia solium porcine cysticercosis (PCC) and gastrointestinal (GI) parasites co-infection status in pigs. One hundred sixty-one households were selected randomly and visited between November and December 2019. A household questionnaire was administered, and faecal and blood samples were collected from at least one pig older than 3 months per household. A blood sample was obtained from a jugular venipuncture, and a rectal faecal sample was obtained. Taenia spp. circulating antigen levels in the sample sera were tested using a commercial enzyme-linked immunosorbent assay kit, apDia™ cysticercosis Ag ELISA. The modified McMaster technique was used to identify and quantify the GI parasites. The apparent animal-level seroprevalence for PCC was 4.8% (95% CI 2.7–7.1) and differed across the two districts (p = 0.018). At the pig herd level, the prevalence was 9.7% (95% CI 5.5–14.4). The prevalence of the different nematode eggs and coccidian oocysts in the two districts was as follows: strongyles 79.0% (95% CI 74.3–83.6), coccidia 73.3% (95% CI 68.3–78.6), Trichuris spp. 7.4% (95% CI 4.9–10.6), Strongyloides ransomi 2.1 (95% CI 0.7–3.5) and Ascaris spp. 4.9 (95% CI 2.8–7.4). Overall, across the two districts, the arithmetic mean for the oocysts per gram (OPG) for coccidia was 2042.2 ± 5776.1, and eggs per gram (EPG) were the highest in strongyles 616.1 ± 991. Overall, 57.4% of the porcine cysticercosis seropositive pigs were also positive for at least one of the gastrointestinal helminths which included strongyles, Strongyloides ransomi, Trichuris spp. and Ascaris spp. The co-infection status of pigs with both PCC and GI parasites demonstrated by this study can provide an incentive for integrating the control and management of both parasites with oxfendazole. Further studies are required to understand the feasibility of using oxfendazole including cost–benefit analysis and the acceptability by local stakeholders for the control of T. solium cysticercosis and gastrointestinal parasites in pigs.


Author(s):  
Rufin K. Assaré ◽  
Mathieu I. Tra-Bi ◽  
Jean T. Coulibaly ◽  
Paul L. A. M. Corstjens ◽  
Mamadou Ouattara ◽  
...  

In low-endemicity settings, current tools for diagnosis and surveillance of schistosomiasis are often inaccurate in detecting true infection. We assessed the accuracy of an up-converting phosphor lateral flow circulating anodic antigen (UCP-LF CAA) test and a point-of-care circulating cathodic antigen (POC-CCA) urine cassette test for the diagnosis of Schistosoma mansoni. Our study was conducted in eight schools of western Côte d’Ivoire. Fifty children, aged 9 to 12 years, were enrolled per school. From each child, a single urine specimen and two stool specimens were collected over consecutive days for diagnostic workup. Urine samples were subjected to UCP-LF CAA and POC-CCA tests. From each stool sample, triplicate Kato-Katz thick smears were examined. Overall, 378 children had complete data records. The prevalence of S. mansoni, as assessed by six Kato-Katz thick smears, was 4.0%. The UCP-LF CAA and POC-CCA tests revealed S. mansoni prevalence of 25.4% and 30.7%, respectively, when considering trace results as positive, and prevalence of 23.3% and 10.9% when considering trace results as negative. In the latter case, based on a composite gold standard, the sensitivity of UCP-LF CAA (80.7%) was considerably higher than that of POC-CCA (37.6%) and six Kato-Katz thick smears (13.8%). The negative predictive value of UCP-LF CAA, POC-CCA, and six Kato-Katz thick smears was 92.8%, 79.8%, and 74.1%, respectively. Our results confirm that UCP-LF CAA is more accurate than Kato-Katz and POC-CCA for the diagnosis of S. mansoni in low-endemicity settings.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 507
Author(s):  
Mariasole Colombo ◽  
Simone Morelli ◽  
Giulia Simonato ◽  
Angela Di Cesare ◽  
Fabrizia Veronesi ◽  
...  

Vector-borne diseases (VBDs) are globally widespread arthropod-transmitted diseases with a significant impact on animal and human health. Many drivers have recently spurred the geographic spread of VBDs in dogs. This study has evaluated the exposure to most important VBDs in dogs under different preventative treatments in different regions of Italy, i.e., Veneto, Friuli Venezia-Giulia, Umbria, Giglio Island (Tuscany), Abruzzo and Latium. Serological analyses were performed to detect antibodies against Leishmania infantum, Babesia canis, Anaplasma phagocytophilum/Anaplasma platys, Ehrlichia canis/Ehrlichia ewingii, Borrelia burgdorferi, Rickettsia conorii and the circulating antigen of Dirofilaria immitis. Dogs were categorized according to the treatment schedule usually received, and the association between seropositivity and possible risk factors was statistically evaluated. Overall, 124/242 (51.2%) dogs tested positive for at least one pathogen, while 34 (14.0%) were exposed to two or more pathogens. The most detected seropositivity was against R. conorii, followed by Anaplasma spp., L. infantum, B. canis, and the other pathogens under study. Significant statistical associations were found according to geographical provenance, history of tick infestation, lifestyle and inadequate prophylactic treatments. Random/irregular treatments have been identified as a clear risk factor. These results show that adequate prophylactic treatment protocols are overlooked by dog owners, despite the availability of several effective products, with possible implications in veterinary medicine and on public health.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 322
Author(s):  
Stefano De Benedetti ◽  
Flavio Di Pisa ◽  
Enrico Mario Alessandro Fassi ◽  
Marina Cretich ◽  
Angelo Musicò ◽  
...  

The human parasitic disease Schistosomiasis is caused by the Schistosoma trematode flatworm that infects freshwaters in tropical regions of the world, particularly in Sub-Saharan Africa, South America, and the Far-East. It has also been observed as an emerging disease in Europe, due to increased immigration. In addition to improved therapeutic strategies, it is imperative to develop novel, rapid, and sensitive diagnostic tests that can detect the Schistosoma parasite, allowing timely treatment. Present diagnosis is difficult and involves microscopy-based detection of Schistosoma eggs in the feces. In this context, we present the 3.22 Å resolution crystal structure of the circulating antigen Serine protease inhibitor from S. mansoni (SmSPI), and we describe it as a potential serodiagnostic marker. Moreover, we identify three potential immunoreactive epitopes using in silico-based epitope mapping methods. Here, we confirm effective immune sera reactivity of the recombinant antigen, suggesting the further investigation of the protein and/or its predicted epitopes as serodiagnostic Schistosomiasis biomarkers.


2020 ◽  
Author(s):  
Shaali Ame ◽  
Fatma M. Kabole ◽  
Salum Abuubakar ◽  
Alphoncina Maseko Nanai ◽  
Ghirmay Andemichael ◽  
...  

Abstract Background Lymphatic filariasis (LF) is a debilitating neglected tropical disease which is targeted for elimination through co-administration of a single dose of ivermectin and albendazole in the affected population. Following implementation of such a treatment campaign over a period of years, control programmes are urged to conduct a transmission assessment survey to monitor the impact of the treatment and to ascertain whether the transmission is interrupted to a level that can no longer sustain transmission and hence mass drug administration (MDA) can be halted. Objective:This study was carried out to determine the prevalence of LF infection in Zanzibar communities, 13 years after stopping MDA, so as to inform and guide the control program. MethodologyA Finger prick blood sample was collected from each participant after obtaining informed consent. The sample was assessed for the presence of Wucheria bancrofti circulating antigen using rapid immunochromatographic test. ResultsA total of 2555 subjects were enrolled (1231 in Pemba and 1324 in Unguja) in the study with a mean age of 23.0yrs ± SD 18.9 (95% CI = 22.3-23.8). There were more female (53.9%) than male (46.1%); and their mean age significantly differed (t-test = 7.5, p = 0.00001). Only 2478 individuals gave blood sample . Of these, 88 (3.55%) were found to be infected with W. bancrofti. Overall, the prevalence of infection was higher in Pemba (5.1%) than in Unguja (2.1%). The prevalence of infection was similar between different older age groups , children aged 1-5yrs in Pemba had the highest prevalence indicating that transmission is ongoing. Observation of development of clinical manifestation, lymphoedema and hydrocele was also assessed. Overall, only 1.1% of the individuals had lymphoedema/elephantiasis; with male presented with more of those signs (1.6%) than female (0.7%). There was no male subject found to have hydrocele , although 8.3% of male had filariasis.The assessment of treatment history revealed that majority (64.7%) of the respondents had received at least one treatment round during their lifetime. Historical treatments with ivermectin did not correlate with current individual levels of infection but individuals who reported to have received 2 and 4 rounds of treatment were not found to be infected with filariasis.Conclusion and RecommendationIn view of our findings it clearly shows that the prevalence of LF in Zanzibar is still high to exceed the set threshold for discontinuation of MDA campaign. Children as young as 5yrs were found infected. It is therefore important to consider continuation of MDA so as to prevent potential disease sequel which might develop.


2020 ◽  
Vol 240 ◽  
pp. 111317
Author(s):  
Marla I Hertz ◽  
Amy Rush ◽  
Thomas B Nutman ◽  
Gary J Weil ◽  
Sasisekhar Bennuru ◽  
...  

2020 ◽  
Author(s):  
Xuhang Shen ◽  
Wen Cui ◽  
Cong Wang ◽  
Obed Cudjoe ◽  
Liang Zhao ◽  
...  

Abstract Background: Toxoplasma gondii is a single-celled parasite commonly found in mammals. Diagnosis of toxoplasmosis largely depends on measurements of the antibody and/or antigen and Toxoplasma-derived DNAs due to the presence of tissue dwelling quiescent cysts and latent infection of the parasite. As a major surface antigen of T.gondii tachyzoites, SAG1 is a key marker for laboratory diagnosis. However, at present, there are no methods available for SAG1 detection using aptamer-based technology.Methods: Recombinant truncated SAG1(r-tSAG1)of Toxoplasma WH3 strain (type Chinese 1) was prokaryotically expressed and subjected to the synthetic oligonucleotide library for selection of nucleic acid aptamer which targets the r-tSAG1, with systematic evolution of ligands by exponential enrichment (SELEX) strategy. The screened specific aptamer-2 was used in direct enzyme-linked aptamer assay (DELAA) to detect native SAG1 obtained from tachyzoite lysates, mouse sera of acute infection, and human sera that had been verified to be positive for ToxoDNAs by PCR amplification. Results: The soluble r-tSAG1 protein was obtained from E.coli lysates by using 0.01M Tris-Cl in PBS, and was purified and identified by immunoblotting, and then labelled with biotin. The screened aptamers were amplified by PCR, followed by DNA sequencing. The results showed that the aptamer-2, with the highest affinity to nSAG1 among the four aptamer candidates, has a higher specificity and sensitivity when used in detection of nSAG1 in the sera of both animals and humans when compared with the commercial Toxoplasma circulating antigen testing kit.Conclusions: A new direct enzyme-linked aptamer assay (DELAA), with aptamer-2 as the recognition probe, was developed for detection of native SAG1 protein secreted by T.gondii. With increased sensitivity and specificity, stability during storage, easy and cheaper production, the aptamer-based technique is considered as a efficient method for the diagnosis of active and reactivated toxoplasmosis.


Sign in / Sign up

Export Citation Format

Share Document