entropy transfer
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 20)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Aysima Hacisuleyman ◽  
Burak Erman

Time resolved Raman and infrared spectroscopy experiments show the basic features of information transfer between residues in proteins. Here, we present the theoretical basis of information transfer using a simple elastic net model and recently developed entropy transfer concept in proteins. Mutual information between two residues is a measure of communication in proteins which shows the maximum amount of information that may be transferred between two residues. However, it does not explain the actual amount of transfer nor the transfer rate of information between residues. For this, dynamic equations of the system are needed. We used the Schreiber theory of information transfer and the Gaussian network Model of proteins, together with the solution of the Langevin equation, to quantify allosteric information transfer. Results of the model are in perfect agreement with ultraviolet resonance Raman measurements. Analysis of the allosteric protein Human NAD-dependent isocitrate dehydrogenase shows that a multitude of paths contribute collectively to information transfer. While the peak values of information transferred are small relative to information content of residues, considering the estimated transfer rates, which are in the order of megabits per second, sustained transfer during the activity time-span of proteins may be significant.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1350
Author(s):  
Ferenc Márkus ◽  
Katalin Gambár

The discovery of quantized electric conductance by the group of van Wees in 1988 was a major breakthrough in physics. A decade later, the group of Schwab has proven the existence of quantized thermal conductance. Advancing from these and many other aspects of the quantized conductances in other phenomena of nature, the concept of quantized entropy current can be established and it eases the description of a transferred quantized energy package. This might yield a universal transport behavior of the microscopic world. During the transfer of a single energy quantum, hν, between two neighboring domains, the minimum entropy increment is calculated. It is pointed out that the possible existence of the minimal entropy transfer can be formulated. Moreover, as a new result, it is proved that this minimal entropy transfer principle is equivalent to the Lagrangian description of thermodynamics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mateusz Ozimek ◽  
Jan J. Żebrowski ◽  
Rafał Baranowski

Using information theoretic measures, relations between heart rhythm, repolarization in the tissue of the heart, and the diastolic interval time series are analyzed. These processes are a fragment of the cardiovascular physiological network. A comparison is made between the results for 84 (42 women) healthy individuals and 65 (45 women) long QT syndrome type 1 (LQTS1) patients. Self-entropy, transfer entropy, and joint transfer entropy are calculated for the three time series and their combinations. The results for self-entropy indicate the well-known result that regularity of heart rhythm for healthy individuals is larger than that of QT interval series. The flow of information depends on the direction with the flow from the heart rhythm to QT dominating. In LQTS1 patients, however, our results indicate that information flow in the opposite direction may occur—a new result. The information flow from the heart rhythm to QT dominates, which verifies the asymmetry seen by Porta et al. in the variable tilt angle experiment. The amount of new information and self-entropy for LQTS1 patients is smaller than that for healthy individuals. However, information transfers from RR to QT and from DI to QT are larger in the case of LQTS1 patients.


2020 ◽  
Author(s):  
Andrew Kamal

With the emergence of regressional mathematics and algebraic topology comes advancements in the field of artificial intelligence and machine learning. Such advancements when looking into problems such as nuclear fusion and entropy, can be utilized to analyze unsolved abnormalities in the area of fusion related research. Proof theory will be utilized throughout this paper. For logical mathematical proofs: n represents an unknown number, e represents point of entropy, and m represents maximum point, f represents fusion. This paper will look into analysis of the topic of nuclear fusion and unsolved problems as hardness problems and attempt to formulate computational proofs in relation to entropy, fusion maximum, heat transfer, and entropy transfer mechanisms. This paper will not only be centered around logical proofs but also around computational mechanisms such as distributed computing and its potential role in analyzing computational hardness in relation to fusion related problems. We will summarize a proposal for experimentation utilizing further logical proof formalities and the decentralized-internet SDK for a computational pipeline in order to solve fusion related hardness problems.


Sign in / Sign up

Export Citation Format

Share Document