cation complexation
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 14)

H-INDEX

33
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 470
Author(s):  
Josip Požar ◽  
Marija Cvetnić ◽  
Andrea Usenik ◽  
Nikola Cindro ◽  
Gordan Horvat ◽  
...  

The binding of alkali metal cations with two tertiary-amide lower-rim calix[4]arenes was studied in methanol, N,N-dimethylformamide, and acetonitrile in order to explore the role of triazole and glucose functionalities in the coordination reactions. The standard thermodynamic complexation parameters were determined microcalorimetrically and spectrophotometrically. On the basis of receptor dissolution enthalpies and the literature data, the enthalpies for transfer of reactants and products between the solvents were calculated. The solvent inclusion within a calixarene hydrophobic basket was explored by means of 1H NMR spectroscopy. Classical molecular dynamics of the calixarene ligands and their complexes were carried out as well. The affinity of receptors for cations in methanol and N,N-dimethylformamide was quite similar, irrespective of whether they contained glucose subunits or not. This indicated that sugar moieties did not participate or influence the cation binding. All studied reactions were enthalpically controlled. The peak affinity of receptors for sodium cation was noticed in all complexation media. The complex stabilities were the highest in acetonitrile, followed by methanol and N,N-dimethylformamide. The solubilities of receptors were greatly affected by the presence of sugar subunits. The medium effect on the affinities of calixarene derivatives towards cations was thoroughly discussed regarding the structural properties and solvation abilities of the investigated solvents.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Seung-Jae Shin ◽  
Dong Hyun Kim ◽  
Geunsu Bae ◽  
Stefan Ringe ◽  
Hansol Choi ◽  
...  

AbstractTo design electrochemical interfaces for efficient electric-chemical energy interconversion, it is critical to reveal the electric double layer (EDL) structure and relate it with electrochemical activity; nonetheless, this has been a long-standing challenge. Of particular, no molecular-level theories have fully explained the characteristic two peaks arising in the potential-dependence of the EDL capacitance, which is sensitively dependent on the EDL structure. We herein demonstrate that our first-principles-based molecular simulation reproduces the experimental capacitance peaks. The origin of two peaks emerging at anodic and cathodic potentials is unveiled to be an electrosorption of ions and a structural phase transition, respectively. We further find a cation complexation gradually modifies the EDL structure and the field strength, which linearly scales the carbon dioxide reduction activity. This study deciphers the complex structural response of the EDL and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and electrocatalysis.


2021 ◽  
Author(s):  
Seung-Jae Shin ◽  
Dong Hyun Kim ◽  
Geunsu Bae ◽  
Stefan Ringe ◽  
Hansol Choi ◽  
...  

Abstract To design electrochemical interfaces for efficient electric-chemical energy interconversion, it is critical to reveal the electric double layer (EDL) structure and relate it with electrochemical activity; nonetheless, this has been a long-standing challenge. Of particular, no molecular-level theories have fully explained the characteristic two peaks arising in the potential-dependence of the EDL capacitance, which is sensitively dependent on the EDL structure. We herein demonstrate that our first-principles-based molecular simulation reproduces the experimental capacitance peaks. The origin of two peaks emerging at anodic and cathodic potentials is unveiled to be an electrosorption of ions and an EDL structural phase transition, respectively. We further find a cation complexation gradually modifies the EDL structure and the field strength, which linearly scales the carbon dioxide reduction activity. This study deciphers the complex structural response of the EDL and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and electrocatalysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257026
Author(s):  
Oliver J. Hills ◽  
James Smith ◽  
Andrew J. Scott ◽  
Deirdre A. Devine ◽  
Helen F. Chappell

Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung colonizer, producing an extracellular matrix (ECM) composed predominantly of the extracellular polysaccharide (EPS) alginate. The ECM limits antimicrobial penetration and, consequently, CF sufferers are prone to chronic mucoid P. aeruginosa lung infections. Interactions between cations with elevated concentrations in the CF lung and the anionic EPS, enhance the structural rigidity of the biofilm and exacerbates virulence. In this work, two large mucoid P. aeruginosa EPS models, based on β-D-mannuronate (M) and β-D-mannuronate-α-L-guluronate systems (M-G), and encompassing thermodynamically stable acetylation configurations–a structural motif unique to mucoid P. aeruginosa–were created. Using highly accurate first principles calculations, stable coordination environments adopted by the cations have been identified and thermodynamic stability quantified. These models show the weak cross-linking capability of Na+ and Mg2+ ions relative to Ca2+ ions and indicate a preference for cation binding within M-G blocks due to the smaller torsional rearrangements needed to reveal stable binding sites. The geometry of the chelation site influences the stability of the resulting complexes more than electrostatic interactions, and the results show nuanced chemical insight into previous experimental observations.


2019 ◽  
Vol 94 (3-4) ◽  
pp. 257-261
Author(s):  
Slim Mannai ◽  
Lasâad Dammak ◽  
Lassaad Baklouti ◽  
Abdelwaheb Hamdi

Sign in / Sign up

Export Citation Format

Share Document