axon bundle
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhou Fang ◽  
Jian-Long Zou

Collagen VI (COL6) in the microenvironment was recently identified as an extracellular signal that bears the function of promoting orderly axon bundle formation. However, the large molecular weight of COL6 (≈2,000 kDa) limits its production and clinical application. It remains unclear whether the smaller subunit α chains of COL6 can exert axon bundling and ordering effects independently. Herein, based on a dorsal root ganglion (DRG) ex vivo model, the contributions of three main COL6 α chains on orderly nerve bundle formation were analyzed, and COL6 α2 showed the largest contribution weight. A recombinant COL6 α2 chain was produced and demonstrated to promote the formation of orderly axon bundles through the NCAM1-mediated pathway. The addition of COL6 α2 in conventional hydrogel triggered orderly nerve regeneration in a rat sciatic nerve defect model. Immunogenicity assessment showed weaker immunogenicity of COL6 α2 compared to that of the COL6 complex. These findings suggest that recombinant COL6 α2 is a promising material for orderly nerve regeneration.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1144
Author(s):  
Ludmila Mamon ◽  
Anna Yakimova ◽  
Daria Kopytova ◽  
Elena Golubkova

Drosophila melanogaster sbr (small bristles) is an orthologue of the Nxf1 (nuclear export factor 1) genes in different Opisthokonta. The known function of Nxf1 genes is the export of various mRNAs from the nucleus to the cytoplasm. The cytoplasmic localization of the SBR protein indicates that the nuclear export function is not the only function of this gene in Drosophila. RNA-binding protein SBR enriches the nucleus and cytoplasm of specific neurons and glial cells. In sbr12 mutant males, the disturbance of medulla boundaries correlates with the defects of photoreceptor axons pathfinding, axon bundle individualization, and developmental neurodegeneration. RNA-binding protein SBR participates in processes allowing axons to reach and identify their targets.


2021 ◽  
Author(s):  
Pulkit Tandon ◽  
Nandita Bhaskhar ◽  
Nishal Shah ◽  
Sasi Madugula ◽  
Lauren Grosberg ◽  
...  

ABSTRACTRetinal prostheses must be able to activate cells in a selective way in order to restore high-fidelity vision. However, inadvertent activation of far-away retinal ganglion cells (RGCs) through electrical stimulation of axon bundles can produce irregular and poorly controlled percepts, limiting artificial vision. Therefore, the problem of axon bundle activation can be defined as the axonal stimulation of RGCs with unknown soma and receptive field locations, typically outside the electrode array. Here, a new algorithm is presented that utilizes electrical recordings to determine the stimulation current amplitudes above which bundle activation occurs. The method exploits several spatiotemporal characteristics of electrically-evoked spikes to overcome the challenge of detecting small axonal spikes in extracellular recordings. The algorithm was validated using large-scale ex vivo stimulation and recording experiments in macaque retina, by comparing algorithmically and manually identified bundle activation thresholds. The algorithm could be used in a closed-loop manner by a future epiretinal prosthesis to reduce poorly controlled visual percepts associated with bundle activation. The method may also be applicable to other types of retinal implants and to cortical implants.ContributionsPT developed the algorithm and analyzed the data, with input from SMi and EJC. NB and NS helped with the analysis. SMa and LG performed dissections and collected the data. PT and VFH performed manual identification. PH, AS and AML developed and supported recording hardware and software. PT, EJC and SMi wrote the manuscript. NS and SMa edited it. EJC and SMi supervised the project.


Author(s):  
Pulkit Tandon ◽  
Nandita Bhaskhar ◽  
Nishal Shah ◽  
Sasi Madugula ◽  
Lauren Grosberg ◽  
...  

2020 ◽  
Author(s):  
Sasi Madugula ◽  
Alex R. Gogliettino ◽  
Moosa Zaidi ◽  
Gorish Aggarwal ◽  
Alexandra Kling ◽  
...  

ABSTRACTElectrical stimulation of retinal ganglion cells (RGCs), which transmit visual information to the brain, is used in retinal implants to treat blindness caused by photoreceptor degeneration. However, the performance of existing clinical implants is limited by indiscriminate stimulation of many cells and cell types. Recent work in isolated macaque retina has shown the ability to precisely evoke spikes in the major RGC types by direct electrical stimulation at safe current levels, with single-cell, single-spike resolution and avoidance of axon bundle activation in many cases. However, these findings have not been verified in the human retina. Here, electrical activation of the major human RGC types was examined using large-scale, multi-electrode recording and stimulation and compared to results from several macaque retinas obtained using the same methods. Electrical stimulation of the major human RGC types closely paralleled results in macaque, with similar somatic and axonal stimulation thresholds, cellular and cell type selectivity of stimulation, avoidance of axon bundle stimulation by calibration, targeting of different cell types based on their distinct electrical signatures, and potential efficacy of real-time stimulus optimization for artificial vision. The results indicate that the macaque retina provides a quantitatively accurate picture of how focal electrical stimulation can be used in future high-resolution implants.


2020 ◽  
Vol 17 (3) ◽  
pp. 036016 ◽  
Author(s):  
Wei Tong ◽  
Maryam Hejazi ◽  
David J Garrett ◽  
Timothy Esler ◽  
Steven Prawer ◽  
...  

2017 ◽  
Vol 42 ◽  
pp. 26-43 ◽  
Author(s):  
Ricardo Coronado-Leija ◽  
Alonso Ramirez-Manzanares ◽  
Jose Luis Marroquin

2017 ◽  
Vol 381 ◽  
pp. 210
Author(s):  
S. Kaneda ◽  
T. Kirihara ◽  
T. Fujii ◽  
Y. Ikeuchi

2017 ◽  
Vol 118 (3) ◽  
pp. 1457-1471 ◽  
Author(s):  
Lauren E. Grosberg ◽  
Karthik Ganesan ◽  
Georges A. Goetz ◽  
Sasidhar S. Madugula ◽  
Nandita Bhaskhar ◽  
...  

Epiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This study introduces a method to detect axon bundle activation on the basis of its electrical signature and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multielectrode system (512 electrodes, 10-μm diameter, 60-μm pitch). Axon bundle signals were identified by their bidirectional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of expected ganglion cells) over the array. In one recording in the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses. NEW & NOTEWORTHY Large-scale multielectrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation on the basis of its unique electrical signature and was used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.


2016 ◽  
Author(s):  
Lauren E. Grosberg ◽  
Karthik Ganesan ◽  
Georges A. Goetz ◽  
Sasidhar Madugula ◽  
Nandita Bhaskar ◽  
...  

AbstractEpiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This paper introduces a method to detect axon bundle activation based on its electrical signature, and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multi-electrode system (512 electrodes, 10 µm diameter, 60 µm pitch). Axon bundle signals were identified by their bi-directional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of all ganglion cells) over the array. In the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses.New & NoteworthyLarge-scale multi-electrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation based on its unique electrical signature, and used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity, in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.


Sign in / Sign up

Export Citation Format

Share Document