structure flow
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 17)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 334 ◽  
pp. 04019
Author(s):  
Karrar Alofari ◽  
Ezequiel Me´dici ◽  
Kazuya Tajiri ◽  
Jeffrey Allen

Percolation testing and contact angle measurements have been used to investigate the role of relative humidity on structure, mass transport, and wettability of a PEM fuel cell catalyst layer and membrane. Four samples were tested, two catalyst layers and two membranes. Structure and mass transport changes in the catalyst layers resulting from RH changes were studied in terms of percolation pressure. A clear change in the structure between low and high RH conditioning was observed. Relative humidity (RH) cycling also impacted percolation pressures with an indication of catalyst layer cracking. In addition, RH effect on wettability of both catalyst layers and membranes was studied by measuring contact angles of sessile drops.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
K. Karlsons ◽  
D. W. de Kort ◽  
A. J. Sederman ◽  
M. D. Mantle ◽  
J. J. Freeman ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3822
Author(s):  
Yong Liu ◽  
Hongjuan Ran ◽  
Dezhong Wang

The pump turbine is prone to stall when running at part-load operation. Stalls would cause a hump-like head characteristic curve, low-frequency high-amplitude pressure pulsation, and surge or resonance in the system. There is a lack of efficient methods for pump turbine stall suppression. The traditional blade hydrodynamic optimization method has limited effect and would influence the other characteristics. As the essence of stall is flow separation, forming a severe backflow vortex, a “Groove Method” is put forward and employed to suppress stall in a pump turbine with the full consideration of the mechanical structure, flow field, and pressure field. Both experiments and calculations are carried out to test the effectiveness of this new method. Furthermore, its deep mechanisms are revealed. This method can weaken the head hump to a certain extent and reduce the pressure pulse amplitude induced by stall. Meanwhile, the performance at the design operating point is not disturbed much.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 121
Author(s):  
Shi Yue Liu ◽  
Zhengyi Chen ◽  
Pejman Sanaei

Membrane filtration fouling is a very complex process and is determined by many properties such as the membrane internal morphology, membrane pore structure, flow rate and contaminant properties. In a very slow filtration process or during the late stage of filtration, when the flow rate is naturally low and Péclet number is small, particle diffusion is essential and cannot be neglected, while in typical filtration models, especially in moderate and fast filtration process, the main contribution stems from the particle advection. The objectives of this study is to formulate mathematical models that can (i) investigate how filtration process varies under possible effects of particles diffusion; and (ii) describe how membrane morphology evolves and investigate the filtration performance during the filtration process. We also compare the results with the case that diffusion is less important and make a prediction about what kind of membrane filter pore structure should be employed to achieve a particular optimum filtration performance. According to our results, the filtrate and efficiency of particle separation are found to be under the trade-off relationship, and the selection of the membrane properties depends on the requirement of the filtration.


Sign in / Sign up

Export Citation Format

Share Document