experimental possibility
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 10 (22) ◽  
pp. 8198
Author(s):  
Anna Knitter-Piątkowska ◽  
Arkadiusz Dobrzycki

This work concerns the concept and verification of the experimental possibility of using a wavelet transform to assess a steel structure’s condition. In the research, a developed measuring stand was used. Mechanical waves in the metal plate were excited by the impact. These waves were recorded with an electroacoustic transducer and registered in the form of electrical signals. Both the signals generated by the actuator of the plate and the signals reaching the transducer were recorded. The registered data were decomposed into wavelet coefficients. Laboratory tests have shown the possibility of applying this type of test to identify damage in steel structural elements—the relationship between the details of the wavelet transform and the type of damage was demonstrated.



2019 ◽  
Vol 11 (5) ◽  
pp. 10
Author(s):  
Jiri Stavek

In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. In our model the quantum particle is represented as the Huygens-de Broglie’s particle on the helical path (full wave) guided by the Newton-Bohm entangled helical evolute (Bohmian Pilot Wave). These individual Huygens - de Broglie particles in the Young - Feynman double - slit experiment react with Wilhelm Wien’s photons that are always present inside of the apparatus (Wien’s displacement law). Wilhelm Wien’s photons form collectively the Wien filter guiding the Huygens - de Broglie particles through the double - slit barrier towards a detector (BohEmian Pilot Wave). The interplay of those events creates the observed interference pattern. In the very well-known formula describing the intensity of double-slit diffraction patterns we have newly introduced the concept curvature κ of the Huygens - de Broglie particle and thus giving a physical interpretation for the Newton - Bohm guiding wave (the Bohmian Pilot Wave): for photons κ = π/λ, for electrons κ = 2π/λ. Moreover, we have introduced into that formula the expression λmax from the Wien’s displacement law to describe geometry of the double - slit barrier. We propose to modify the value λmax by the change of the system temperature. There is a second experimental possibility - we can insert into those slits filters to remove Wien’s photons while the Huygens - de Broglie particles continue towards a detector - we should observe the particle behavior. The similar situation might occur in the Mach - Zehnder interferometer. In this case the individual Huygens - de Broglie particle reacts in the first beam splitter with the Wien photon: the Huygens - de Broglie particle goes through one path while the Wien photon goes through the second path. In the second beam splitter they interact again and create the interference pattern on one detector. We can experimentally modify the resulting interference pattern in the Mach - Zehnder interferometer - by the temperature change of the system or by inserting filters to remove Wien’s photons from one or both paths. Can it be that Nature cleverly creates those interference patterns while the Bohmian pilot wave and the BohEmian pilot wave are hidden in plain sight? We want to pass this concept into the hands of Readers of this Journal better educated in the Mathematics and Physics.



2017 ◽  
Vol 26 (13) ◽  
pp. 1730022 ◽  
Author(s):  
Andrei G. Lebed

In this paper, we review recent theoretical results, demonstrating breakdown of the equivalence between active and passive gravitational masses and energy due to quantum effects in general relativity. In particular, we discuss the simplest composite quantum body — a hydrogen atom — and define its gravitational masses operators. Using Gedanken experiment, we show that the famous Einstein’s equation, [Formula: see text], is broken with small probability for passive gravitational mass of the atom. It is important that the expectation values of both active and passive gravitational masses satisfy the above-mentioned equation for stationary quantum states. Nevertheless, we stress that, for quantum superpositions of stationary states in a hydrogen atom, where the expectation values of energy are constant, the expectation values of the masses oscillate in time and, thus, break the Einstein’s equation. We briefly discuss experimental possibility to observe the above-mentioned time-dependent oscillations. In this review, we also improve several drawbacks of the original pioneering works.



ASAP/Journal ◽  
2016 ◽  
Vol 1 (2) ◽  
pp. 323-336
Author(s):  
Timothy Morton




2010 ◽  
Vol 8 (56) ◽  
pp. 395-409 ◽  
Author(s):  
Andrew D. Straw ◽  
Kristin Branson ◽  
Titus R. Neumann ◽  
Michael H. Dickinson

Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in real time—with minimal latency—opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behaviour. Here, we describe a system capable of tracking the three-dimensional position and body orientation of animals such as flies and birds. The system operates with less than 40 ms latency and can track multiple animals simultaneously. To achieve these results, a multi-target tracking algorithm was developed based on the extended Kalman filter and the nearest neighbour standard filter data association algorithm. In one implementation, an 11-camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster . At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behaviour of freely flying animals. If combined with other techniques, such as ‘virtual reality’-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.



1994 ◽  
Vol 188 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Bjarne Amstrup ◽  
Gábor Szabó ◽  
Roland A. Sauerbrey ◽  
András Lörincz


Sign in / Sign up

Export Citation Format

Share Document