compound nucleus formation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 0)

2020 ◽  
pp. 1-8
Author(s):  
H.C. Manjunatha ◽  
L. Seenappa ◽  
N. Sowmya ◽  
K.N. Sridhar

We have studied the 54–60Fe-induced fusion reactions to synthesize the superheavy nuclei296–302120 by studying the compound nucleus formation probability, survival probability, and evaporation residue cross-sections. The comparison of the evaporation residue cross-section for different targets reveals that the evaporation residue cross-section is larger for projectile target combination 58Fe+243Pu→301120. We have identified the most probable 58Fe-induced fusion reactions to synthesize superheavy nuclei 296–302120. The suggested reactions may be useful to synthesize the superheavy element Z = 120.


2020 ◽  
Vol 239 ◽  
pp. 03003
Author(s):  
Dmitry Martyanov ◽  
Efrem Soukhovitskiĩ ◽  
Roberto Capote ◽  
José M. Quesada ◽  
Satoshi Chiba

A new dispersive multiband coupled channels optical model with soft-rotator “effective” deformations is proposed to describe nucleon scattering on even-even and odd-A actinides. The impact of the introduction of axial and non-axial dynamical deformations that describe nuclear softness is discussed. Softness and multiband coupling are shown to change compound-nucleus formation cross section by up to ≈ 10% for incident neutron energies below 1 MeV.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750050
Author(s):  
Ahmad Ansari ◽  
Nader Ghahramany

In our new approach, evaporation residue cross-sections for new superheavy nuclei with atomic numbers [Formula: see text] are estimated by calculation of vital characteristics of superheavy nuclei synthesis such as the fission barrier height, the compound nucleus formation probability and the survival probability of the residue nuclei. Our presented estimation is in good agreement with available experimental data. In addition, this new approach allowed us to predict the evaporation residue cross-sections for superheavy nuclei with [Formula: see text] and 120 via introducing synthesis box and compare our results with other models. It is shown that the fission barrier heights of two nuclei with [Formula: see text] and 120 are comparable with their corresponding neutron separation energies. It is suggested that for the synthesis of new superheavy nuclei, it is proper to use nearly double magic nuclei such as [Formula: see text] as our projectile, so that the fission barrier heights remain high.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 80-96 ◽  
Author(s):  
BAO-AN BIAN ◽  
FENG-SHOU ZHANG ◽  
SAI-SAI DU

Based on the improved isospin dependent molecular dynamics model in which the shell correction energy of the system is calculated by using deformed two-center shell model and the surface energy of the system is improved by introducing a switch function that combines the surface energies of projectile and target with the one of the compound nucleus. The effects of the shell correction energy on synthesis of superheavy nuclei and the fusion cross sections in asymmetric and nearly symmetric reaction systems leading to the same compound nuclei 62 Zn , 76 Kr , and 202 Pb are studied. The entrance channel mass asymmetry dependence of compound nucleus formation is found by analyzing the shell correction energies, Coulomb barriers and fusion cross sections. The experimental data are described quantitatively by the present model. It is found that the compound nucleus formation is favorable for the systems with larger mass asymmetry.


2008 ◽  
Vol 665 (4) ◽  
pp. 314-317 ◽  
Author(s):  
Bao-An Bian ◽  
Feng-Shou Zhang ◽  
Hong-Yu Zhou

Sign in / Sign up

Export Citation Format

Share Document