scholarly journals Investigating the Threshold Conditions of Air Breakdown with Mode-Locked Q-Switched Laser Pulses, and the Temporal Dynamics of Induced Plasma with Self-Scattering Phenomenon

2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Kai-Ting Yen ◽  
Chih-Hung Wu ◽  
Pin-Hsun Wang ◽  
Pi-Hui Tuan ◽  
Kuan-Wei Su

A Q-switched Nd:YAG laser with mode-locked modulations is utilized to explore the laser-induced air breakdown. The various modulation depths of the mode-locking within the Q-switched pulse can be utilized to investigate the threshold conditions. With the GHz high-speed detectors to accurately measure the temporal pulse shape pulse by pulse, it is verified that the air breakdown threshold is crucially determined by the peak-power density instead of the energy density from the statistic results, especially for mode-locked Q-switched lasers. The stability of the system for laser-induced breakdown can be evaluated by threshold width through fitting the statistical result. Otherwise, by measuring the temporal characteristics of the excitation pulse and the induced plasma, it is further found that the plasma radiation displays a few-nanoseconds time delay to the excitation pulse and shows a decaying tail to be 10 times longer than the plasma build-up time. Moreover, the incident laser pulse is observed to be self-scattered by the air breakdown, and a rapidly modulated scattering rate is found with a slight delay time to the excitation mode-locked subpulse modulations.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Ruth Houbertz ◽  
Herbert Wolter ◽  
Volker Schmidt ◽  
Ladislav Kuna ◽  
Valentin Satzinger ◽  
...  

ABSTRACTThe integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility ofin situpositioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.


2017 ◽  
Vol 35 (1) ◽  
pp. 92-99 ◽  
Author(s):  
A. Stafford ◽  
A.S. Safronova ◽  
A.Ya. Faenov ◽  
T.A. Pikuz ◽  
R. Kodama ◽  
...  

AbstractThe use of laboratory experiments as plasma creating sources is a valuable tool for understanding astrophysical observations. Recently plasma created through irradiation by lasers with relativistic intensities has been used to study effects of hot electrons and X-ray pumping on X-ray formation of multiply charged ions spectra. This paper discusses the formation of K-shell Fe spectra recorded from a plasma irradiated by 35 fs pulses with intensities of 1021 W/cm2. Modeling of the spectra suggests three different regions of plasma radiation including a cold ~10 eV region, a mild ~700 eV region, and a hot ~3500 eV region. The influence of hot electrons and X-ray pumping is discussed and a comparison with K-shell Fe spectra from a 1 MA X-pinch experiment is included to highlight the differences due to the shorter time frame of the laser–plasma interaction experiment.


2014 ◽  
Vol 599-601 ◽  
pp. 201-204
Author(s):  
Hai Dong Wu

The principle of laser induced air breakdown was introduced. The laser energy conversion in ionization process was studied. The phenomenon of laser induced air breakdown was observed by using high speed camera. It was found that a higher laser energy induced more laser energy to transfer into light and sound energy. The plasma reached maximum in shape in about 20 to 30 ns after laser excitation, and disappeared in about 16μs.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1358-1363 ◽  
Author(s):  
David R. Carlson ◽  
Daniel D. Hickstein ◽  
Wei Zhang ◽  
Andrew J. Metcalf ◽  
Franklyn Quinlan ◽  
...  

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.


2013 ◽  
Vol 25 (6) ◽  
pp. 1435-1439
Author(s):  
朱连燕 Zhu Lianyan ◽  
廖成 Liao Cheng ◽  
杨丹 Yang Dan ◽  
赵朋程 Zhao Pengcheng

Sign in / Sign up

Export Citation Format

Share Document