scholarly journals Influence of Temperature and Concentration on MHD Oscillatory Flow for Bingham Fluid with Variable Viscosity Through an inclined channel

2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Safaa Mohammed ◽  
Dheia G. Salih Al-Khafajy

In this paper aims, we found the fluid concentration after calculating the velocity and temperature of the fluid with a variable viscosity that depends on the fluid moving through an inclined porous channel. We examined the influences of certain parameters that are active on fluid velocity by analyzing the graphs obtained after we reached the momentum equation solution, and used the MATHEMATICA program for plot the velocity and temperature of the fluid for two types of flow (Poiseuille and Couette).

2020 ◽  
pp. 1426-1432
Author(s):  
Dheia G. Salih Al-Khafajy

This paper aims to study a mathematical model showing the effects of mass transfer on MHD oscillatory flow for Carreau fluid through an inclined porous channel under the influence of temperature and concentration at a slant angle on the centre of the flow with the effect of gravity. We discussed the effects of several parameters that are effective on fluid movement by analyzing the graphs obtained after we reached the momentum equation solution using the perturbation series method and the MATHEMATICA program to find the numerical results and illustrations. We observed an increased fluid movement by increasing radiation and heat generation while fluid movement decreased by increasing the chemical reaction parameter and Froude number.   


Author(s):  
H. Balachandra ◽  
Choudhari Rajashekhar ◽  
Hanumesh Vaidya ◽  
Fateh Mebarek Oudina ◽  
Gudekote Manjunatha ◽  
...  

The exploration addresses the effect of variable viscosity and thermal conductivity on the peristaltic mechanism of Bingham fluid. A two-dimensional non-uniform porous channel is considered for the fluid flow, which is assumed to be inclined. The impact of heat, slip conditions, wall properties, homogeneous and heterogeneous reactions are examined. The resulting nonlinear differential equations are solved by employing the perturbation method. The solutions acquired are analyzed and sketched through graphs that show that the variable viscosity renders a critical role in regulating the velocity of the fluid in the channel's central part. The stream function has been analyzed to observe the trapping phenomenon. Further, the obtained results find its application in understanding the flow of blood in micro arteries.


2020 ◽  
pp. 854-869
Author(s):  
Rabiha S. Kareem ◽  
Ahmed M. Abdulhadi

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. SmallReynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equations to the momentum was based on the perturbation method to find the axial velocity, pressure gradient and trapping phenomenon. The influences of the various flow parameters of the problem on these distributions were debated and proved graphically by figures.


2021 ◽  
Vol 1 (1) ◽  
pp. 94-105
Author(s):  
Zain Alabdeen A.N.ALSAFI ◽  
Ahmed A.H. Al-Aridhee ◽  
Saif Razzaq Al-Waily

In this research, the williamson flow with heat transfer through the tube of compliant wall properties with slip at boundaries is analyzed analytically. An approximated theoretical model is constructed of springbacked flexible compliant walls pipe, chosen to move as sinusoidal wave


2021 ◽  
Vol 321 ◽  
pp. 04002
Author(s):  
Jafar Hasnain ◽  
Mariam Sheikh ◽  
Zaheer Abbas

In this paper, the slip and porosity effects on the channel walls are studied for the oscillatory flow of heat-absorbing/generating dusty nanofluid flowing through a porous medium. The channel is vertical and exposed to the transverse magnetic field and thermal radiation. The base fluid is water with silver as nanoparticles. The basic equations of the flow problem, which appeared to be dimensional, are remodelled in the dimension-less form with the help of non-dimensional variables. The obtained equations are solved analytically using the variable separable method. The graphs are presented to show the impact of these parameters on the flow fields, skin friction, heat transmission rate and discussed in detail. Results reveal that the flow velocities of fluid and particles for suction are greater than in the case of injection. The fluid velocity upsurges with the improved values of the velocity slip parameter.


2019 ◽  
Vol 4 (2) ◽  
pp. 575-590 ◽  
Author(s):  
G. Gopi Krishna ◽  
S. Sreenadh ◽  
A.N.S. Srinivas

AbstractThe present study examines the entropy generation on Couette flow of a viscous fluid in parallel plates filled with deformable porous medium. The fluid is injected into the porous channel perpendicular to the lower wall with a constant velocity and is sucked out of the upper wall with same velocity .The coupled phenomenon of the fluid flow and solid deformation in the porous medium is taken in to consideration. The exact expressions for the velocity of fluid, solid displacement and temperature distribution are found analytically. The effect of pertinent parameters on the fluid velocity, solid displacement and temperature profiles are discussed in detail. In the deformable porous layer, it is noticed that the velocity of fluid, solid displacement and temperature distribution are decreases with increasing the suction/injection velocity parameter. The results obtained for the present flow characteristic reveal several interesting behaviors that warrant further study on the deformable porous media. Furthermore, the significance of drag and the volume fraction on entropy generation number and Bejan number are discussed with the help of graphs.


Sign in / Sign up

Export Citation Format

Share Document