tabas earthquake
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Yaghub Ebrahimi ◽  
◽  
Ali Hemmati ◽  
Ali Reza Mortezaei ◽  
Mahmud Nikkhah Shahmirzadi ◽  
...  

The aim of this study is to evaluate the value of suitable distance due to prevent the impact between two irregular adjacent buildings when earthquake is caused to occur large lateral displacement and damage the elements of buildings. For this purpose, by using a mathematical program based on neural network, the number of stories, the period and height of investigated models, PGD, PGV and PGA of earthquake records are defined and the nonlinear lateral displacements of different structures are determined in order to use in the program. Thus, the results of displacements based on all inputs are listed and the minimum critical distance is approximately estimated based on especial regression. For instance, a 3-4 story model is numerically investigated by Tabas earthquake record, which is suggested to provide required gap size about 70 cm. In fact, each model has to observe a 35 cm gap. A newly developed program based on mathematical equations are applied for determining the lateral displacements of each story. A new mathematical formula is proposed by neural network, which shows the least distance between irregular adjacent buildings. For investigating the accuracy of formula, two different ways are performed and the results of analyses confirm suggested equation. For this challenge, a 2-4 story model is considered and three different critical distances are calculated to be 59, 62 and 75 cm which show the last gap size is able to provide safety gap size, determined by suggested formula.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
G. Behzad Zamani

AbstractIn this paper, the state of stress in the northern Tabas block in east-central Iran is analyzed based on the systematic inversion of aftershock focal mechanisms from the 1978.09.16 Tabas earthquake, to characterise the stress regime that controls most earthquakes in this area. Here, stress inversions of double-couple focal mechanisms of earthquakes recorded during the 30 days following the main shock have been carried out. The calculated average stress regime indicates dominant major 226° to 237° trending compression for the Tabas region. The dominating regime in east-central Iran is thrusting with a minimum stress axis, σ 3, close to vertical. The reconstruction of the main seismotectonic stress in east-central Iran with a NE-SW compression is consistent with independent information of the active plate convergence related to Arabia-Eurasia convergence. Most earthquakes in the mentioned area occur near or around concealed Quaternary thrust faults with their activity being controlled by the NE-SW compression. Where ϕ, the ratio of principal stress differences, is 0.5, a small difference between σ 2; σ 3 and σ 1 and small amounts of deviatoric stress is indicated. Therefore, for small deviatoric horizontal σ 1 it is not possible to increase and reactivate small sections of basement thrust faults and create secondary basement aftershocks. Reconstructed stress regimes in this study for sedimentary cover (237) and basement (226) of Tabas are similar. Therefore, it seems that the basement and cover were coupled together, possibly along the 2–4 km of upper Precambrian low-grade metamorphic rocks. Then these segments of the fold-and-thrust belt were involved in similar seismic activity under a similar stress regime.


2005 ◽  
Vol 151 (1-2) ◽  
pp. 53-76 ◽  
Author(s):  
I. Sarkar ◽  
V. SriRam ◽  
H. Hamzehloo ◽  
K.N. Khattri
Keyword(s):  

1986 ◽  
Vol 2 (3) ◽  
pp. 635-651 ◽  
Author(s):  
Mansour Niazi

Three triaxial sets of accelerograms recorded in the near source region (within 50 km epicentral distance) of the September 16, 1978, Tabas earthquake (Ms 7.4 -7.7) are of great engineering importance. The distances of the recording sites from the nearest approach of the rupture surface are approximately 3, 17, and 28 km for Tabas, Dayhook and Boshrooyeh stations, respectively. The measured horizontal peak ground accelerations of 0.94 and 0.88 g at Tabas are higher than previously estimated. The peak vertical ground acceleration recorded at this station is 0.74 g. The normalized response spectra at these three stations are consistent with the Newmark-Hall elastic design spectra, suggesting that the latter adequately represent the spectral amplification factors at frequencies above 1 Hz. The main shock accelerogram at Dayhook exhibits at least three distinct events as indication of a complex source behavior. The widened spacing of these events on the Dayhook records further confirms that the rupture front moved northwestward away from this station and towards Tabas. The measured S minus trigger times at Tabas, Dayhook and Boshrooyeh stations are in conflict with the teleseismically determined epicenter, requiring it to move approximately 30 km to the southwest to about 33° 17′N, 57° 09′ E.


Sign in / Sign up

Export Citation Format

Share Document