scholarly journals Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1486
Author(s):  
Martin Dominik ◽  
Barbora Vraníková ◽  
Petra Svačinová ◽  
Jan Elbl ◽  
Sylvie Pavloková ◽  
...  

The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs—Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®—were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100.

2021 ◽  
Vol 4 (4) ◽  
pp. 333-344
Author(s):  
Johnson Ajeh Isaac ◽  
Kokonne Elizabeth Ekere ◽  
Ekeh Ezekiel ◽  
Isa Hayatu Galadima ◽  
Rashida Abdulahi ◽  
...  

Traditionally, the leafy part of Andrographis paniculata and Moringa oleifera have been widely reported to manage hypertension. Investigation of its pharmacological actions justifies its use. As part of formulation studies to standardize them, this study focused on their compaction and compression properties. Compacts equivalent to 250 mg of A. paniculata and M. oleifera were produced by compressing powders and granules at various compression pressure. Results show that M. oleifera met the WHO limit for ash values. Relative density values for granulated batches were higher, while their moisture content values were lower when compared to those of direct compression. The result from Heckel plots shows that batches deform mainly by plastic flow. For Kawakita plots, values of 1/b show that batches containing microcrystalline cellulose were less cohesive. The plot of tensile strength signifies that granulated batches achieved maximum crushing strength faster at low pressure. Formulations containing maize starch were shown to have higher percent porosity, and granulated batches gave higher values for apparent density-pressure relationship and lower friability values. Tablets produced by the wet granulation method showed better compression and compaction properties than those formulated by direct compression.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Pavlína Vodáčková ◽  
Barbora Vraníková ◽  
Petra Svačinová ◽  
Aleš Franc ◽  
Jan Elbl ◽  
...  

As coprocessed excipients (CPE) gain a lot of focus recently, this article compares three commercially available CPE of Avicel brand, namely, CE 15, DG, and HFE 102. Comparison is based on measured physical properties of coprocessed mixtures, respectively, flow properties, pycnometric density, mean particle size, specific surface area, moisture content, hygroscopicity, solubility, pH leaching, electrostatic charge, SEM images, and DSC. Tablets were made employing three pressure sets. Viscoelastic properties and ejection force were assessed during compression, as well as pycnometric density, mass uniformity, height, tensile strength, friability, disintegration, and wetting times. Avicel CE 15 is of mid-range flow properties, contains mid-size and nonspherical particles, and has high hygroscopicity, growing negative charge, best lubricity, lowest tensile strength, and mid-long disintegration times. Avicel DG possesses the worst flow properties, small asymmetrical particles, lowest hygroscopicity, stable charge, intermediate lubricity, and tensile strength and exhibits fast disintegration of tablets. Finally, Avicel HFE 102 has the best flow properties, large symmetrical particles, and middle hygroscopicity and its charge fluctuates throughout blending. It also exhibits inferior lubricity, the highest tensile strength, and slow disintegration of tablets. Generally, it is impossible to select the best CPE, as their different properties fit versatile needs of countless manufacturers and final products.


2013 ◽  
Vol 9 (2) ◽  
pp. 155-161
Author(s):  
Aziana Azlin Abdul Hamid ◽  
Yus Aniza Yusof ◽  
Nyuk L. Chin ◽  
Suhaila Mohamed ◽  
Faiqa Salleh

AbstractThis study investigated the direct compression properties of Eurycoma longifolia Jack tablets using binary mixtures such as microcrystalline cellulose (mcc) and κ-carrageenan (carr). The mixtures were compacted to various compression pressures ranging from 7.5 to 74 MPa at a constant compression speed of 5 mm/min. The tensile strengths of the tablets were determined by a diametral compression test. A linear relationship between the tensile strength and the compression pressure was observed under the conditions of the test; hence, the slopes of the data were obtained by fitting linear trend lines. This paper shows that binary mixtures of 30% mcc and 70% Eurycoma longifolia Jack give the highest values for constant (a slope) compared with the other binary mixtures of both binders. Thus, this approach can be used to develop formulations for Eurycoma longifolia Jack tablets.


Author(s):  
Kajal A Prajapati ◽  
Dhara B Patel ◽  
Anil G Raval

Mirabegron Orally Disintegrating Tablets were prepared using a direct compression approach with a novel approach of combining effervescence agents and super disintegrants to achieve a rapid disintegration. A screening study was performed using Crospovidone XL 10, Croscarmellose Sodium and Sodium Starch Glycolate at two levels to least Disintegration Time, which was achieved by Croscarmellose Sodium. The prepared tablets were evaluated for Weight variation, Thickness, Hardness, Disintegration time, Dissolution, and Water uptake study. A full factorial statistical optimization was carried out on the best optimized formulation to establish the design space for selected factors i.e., Level of Effervescence agents and Croscarmellose Sodium against Response Disintegration Time and Dissolution. A significant effect of both factors was found on DT as well as Dissolution rate, which justifies the use and rationale of the excipients. Key words: Mirabegron, ODT, Direct Compression, Effervescence agents, Super disintegrants


Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Teodora Balaci ◽  
Bruno Velescu ◽  
Oana Karampelas ◽  
Adina Magdalena Musuc ◽  
George Mihai Nițulescu ◽  
...  

The aim of our study was to obtain rutoside (RUT) inclusion complexes in β-cyclodextrin (β-CD) and in hydroxypropyl-β-cyclodextrin (HP-β-CD), in a 1:1 molar ratio, using the lyophilization method of complexation in solution. The complexes were confirmed and characterized, in comparison with the raw materials and their simple physical mixtures, by SEM, DSC, and FT-IR analyses. The antioxidant activity of the compounds was assessed by using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2’-azino-bis(3-ethylbenzothiazolin-6-sulfonic) acid (ABTS) radicals, determining the radical scavenging activity, and by ferric reducing antioxidant power (FRAP) assay. The results revealed superior antioxidant ability for the inclusion complexes towards rutoside alone. The inclusion complexes were used as active ingredients in formulations of immediate-release tablets. The preformulation studies were performed on the powders for direct compression obtained after mixing the active ingredients with the excipients (Avicel PH 102, Polyplasdone XL-10, magnesium stearate, and talc). The materials were assessed for particle size, flowability, compressibility, and moisture content, establishing they are suitable for a direct compression process. The tablets were characterized regarding their pharmaco-technical properties and the results proved that the formulations lead to high-quality delivery systems, showing a good mechanical resistance with a low friability, excellent disintegration times, and satisfying dissolution rate. The performances were very similar for both formulations and the physico-mechanical properties of the tablets are not influenced by type of the used cyclodextrin, but the RUT- HP-β-CD tablets presented a higher dissolution rate.


2015 ◽  
Vol 51 (1) ◽  
pp. 155-171 ◽  
Author(s):  
Daniel García Ramírez ◽  
Leopoldo Villafuerte Robles

Specific values of technological properties of excipients allow the establishment of numerical parameters to define and compare their functionality. This study investigates the functionality of Polyplasdones XL and XL10. Parameters studied included tablet disintegration profiles, compactibility profiles and powder flow. The results allowed the establishment of quantitative surrogate functionalities of technological performance, such as absolute number, and as a value relative to the known microcrystalline cellulose type 102. Moreover, the establishment of an explicit functionality to improve the technological performance of two diluents and a model drug was investigated, as was setting up of these functionalities, as quantitative values, to determine the input variables of each material and its probable functionality in a drug product. Disintegration times of pure Polyplasdone XL and its admixtures were around half that of Polyplasdone XL10. The improvement in tablet compactibility was 25-50% greater for Polyplasdone XL10 than Polyplasdone XL. Crospovidones proportions of up to 10% have little effect on the flow properties of other powders, although pure Polyplasdone XL10 and its admixtures display compressibility indexes about 20% greater than Polyplasdone XL. The observed results are in line with a smaller particle size of Polyplasdone XL10 compared to Polyplasdone XL.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Afewerk Getachew ◽  
Zewdu Yilma ◽  
Solomon Abrha

Taro Boloso-I (TB1), a newly improved Colocasia esculenta variety, is a potential source of starch with high yield. However, to improve some limitations of the native starches (NS), such as flowability and compactibility, different physical and chemical starch modifications have been employed. Acetylation is one of the chemical modifications which improves the flow and compaction of the NS, which are prerequisite during direct compression (DC) of tablets. Hence, in this study, TB1 starch was acetylated using acetic anhydride and evaluated as an ideal excipient for direct compression. Starch acetates (SA) with a degree of substitution (DS) of 0.072 (SA1) and 0.695 (SA2) were produced and evaluated. FTIR spectra of the SAs were used to verify the acetylation of the NS. Powder flow evaluation parameters showed significant improvement in the flow properties of the NS following acetylation. In addition, the swelling power, solubility, and compactibility were also improved. Tensile strength (TS) of the tablets comprising SAs only, SA1 (41.40) and SA2 (63.43 Kg/cm2), was significantly higher than tablets made of the NS (31.96) and Starch 1500® (15.12 Kg/cm2). The SAs also showed lower sensitivity towards lubrication than the NS and Starch 1500® as lower lubricant sensitivity ratios were recorded. In addition, tablets comprising the SAs satisfactorily accommodated at least up to 50 % w/w paracetamol—compared to 30 % w/w by Starch 1500®—upon DC processing. The paracetamol tablets comprising SAs also complied with the United States Pharmacopeia specifications for disintegration and dissolution studies. Therefore, taking all the facts into consideration, the SAs could be potential DC excipients in tablet formulations.


Sign in / Sign up

Export Citation Format

Share Document