bacterial flagellar motor
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 58)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Navish Wadhwa ◽  
Alberto Sassi ◽  
Howard C. Berg ◽  
Yuhai Tu

Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in external mechanical environment by adding or removing torque-generating stator units. However, the molecular mechanism for mechanosensitive motor remodeling remains unclear. Here, we induced stator disassembly using electrorotation, followed by the time-dependent assembly of the individual stator units into the motor. From these experiments, we extracted detailed statistics of the dwell times underlying the stochastic dynamics of stator unit binding and unbinding. The dwell time distribution contains multiple timescales, indicating the existence of multiple stator unit states. Based on these results, we propose a minimal model with four stator unit states – two bound states with different unbinding rates, a diffusive unbound state, and a recently described transiently detached state. Our minimal model quantitatively explains multiple features of the experimental data and allows us to determine the transition rates between all four states. Our experiments and modeling point towards an emergent picture for mechano-adaptive remodeling of the bacterial flagellar motor in which torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the two bound states. Furthermore, the binding rate of stator units with the motor has a non-monotonic dependence on the number of bound units, likely due to two counter-acting effects of motor’s rotation on the binding process.


2021 ◽  
Author(s):  
Hiroyuki Terashima ◽  
Kiyoshiro Hori ◽  
Kunio Ihara ◽  
Michio Homma ◽  
Seiji Kojima

Abstract The flagellar motor rotates bi-directionally in counter-clockwise (CCW) and clockwise (CW) directions. The motor consists of a stator and a rotor. Recent structural studies have revealed that the stator is composed of a pentameric ring of A subunits and a dimer axis of B subunits. The stator interacts with the rotor through conserved charged and neighboring residues, and the rotational power is generated by their interactions through a gear-like mechanism. The rotational direction is controlled by chemotaxis signaling transmitted to the rotor, with no evidence for the stator being involved. In this study, we found novel mutations that affect the switching of the rotational direction at the putative interaction site of the stator to generate rotational force. Our results highlight a novel aspect of flagellar motor function that appropriate switching of the interaction states between the stator and rotor is critical for controlling the rotational direction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jyot D. Antani ◽  
Rachit Gupta ◽  
Annie H. Lee ◽  
Kathy Y. Rhee ◽  
Michael D. Manson ◽  
...  

AbstractReversible switching of the bacterial flagellar motor between clockwise (CW) and counterclockwise (CCW) rotation is necessary for chemotaxis, which enables cells to swim towards favorable chemical habitats. Increase in the viscous resistance to the rotation of the motor (mechanical load) inhibits switching. However, cells must maintain homeostasis in switching to navigate within environments of different viscosities. The mechanism by which the cell maintains optimal chemotactic function under varying loads is not understood. Here, we show that the flagellar motor allosterically controls the binding affinity of the chemotaxis response regulator, CheY-P, to the flagellar switch complex by modulating the mechanical forces acting on the rotor. Mechanosensitive CheY-P binding compensates for the load-induced loss of switching by precisely adapting the switch response to a mechanical stimulus. The interplay between mechanical forces and CheY-P binding tunes the chemotactic function to match the load. This adaptive response of the chemotaxis output to mechanical stimuli resembles the proprioceptive feedback in the neuromuscular systems of insects and vertebrates.


2021 ◽  
Author(s):  
Jyot Antani ◽  
Rachit Gupta ◽  
Annie Lee ◽  
Kathy Rhee ◽  
Michael Manson ◽  
...  

Abstract Reversible switching of the bacterial flagellar motor between clockwise (CW) and counterclockwise (CCW) rotation is necessary for chemotaxis, which enables cells to swim towards favorable chemical habitats. Increase in the viscous resistance to the rotation of the motor (mechanical load) inhibits switching. However, cells must maintain homeostasis in switching to navigate within environments of different viscosities. The mechanism by which the cell maintains optimal chemotactic function under varying loads is not understood. Here, we show that the flagellar motor allosterically controls the binding affinity of the chemotaxis response regulator, CheY-P, to the flagellar switch complex by modulating the mechanical forces acting on the rotor. Mechanosensitive CheY-P binding compensates for the load-induced loss of switching by precisely adapting the switch response to a mechanical stimulus. The interplay between mechanical forces and CheY-P binding tunes the chemotactic function to match the load. This adaptive response of the chemotaxis output to mechanical stimuli resembles the proprioceptive feedback in the neuromuscular systems of insects and vertebrates.


2021 ◽  
Author(s):  
Ruben Perez-Carrasco ◽  
María-José Franco-Oñate ◽  
Jean-Charles Walter ◽  
Jérôme Dorignac ◽  
Fred Geniet ◽  
...  

The bacterial flagellar motor (BFM) is the membrane-embedded rotary molecular motor which turns the flagellum that provides thrust to many bacterial species. This large multimeric complex, composed of a few dozen constituent proteins, has emerged as a hallmark of dynamic subunit exchange. The stator units are inner-membrane ion channels which dynamically bind and unbind to the peptidoglycan at the rotor periphery, consuming the ion motive force (IMF) and applying torque to the rotor when bound. The dynamic exchange is known to be a function of the viscous load on the flagellum, allowing the bacterium to dynamically adapt to its local viscous environment, but the molecular mechanisms of exchange and mechanosensitivity remain to be revealed. Here, by actively perturbing the steady-state stator stoichiometry of individual motors, we reveal a stoichiometry-dependent asymmetry in stator remodeling kinetics. We interrogate the potential effect of next-neighbor interactions and local stator unit depletion and find that neither can explain the observed asymmetry. We then simulate and fit two mechanistically diverse models which recapitulate the asymmetry, finding stator assembly dynamics to be particularly well described by a two-state catch-bond mechanism.


Author(s):  
Haidai Hu ◽  
Mònica Santiveri ◽  
Navish Wadhwa ◽  
Howard C. Berg ◽  
Marc Erhardt ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Mohammed Kaplan ◽  
Elitza I. Tocheva ◽  
Ariane Briegel ◽  
Megan J. Dobro ◽  
Yi-Wei Chang ◽  
...  

The bacterial flagellar motor is a complex macromolecular machine whose function and self-assembly present a fascinating puzzle for structural biologists. Here, we report that in diverse bacterial species, cell lysis leads to loss of the cytoplasmic switch complex and associated ATPase before other components of the motor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kenta I. Ito ◽  
Shuichi Nakamura ◽  
Shoichi Toyabe

AbstractCooperativity has a central place in biological regulation, providing robust and highly-sensitive regulation. The bacterial flagellar motor implements autonomous torque regulation based on the stator’s dynamic structure; the stator units bind to and dissociate from the motor dynamically in response to environmental changes. However, the mechanism of this dynamic assembly is not fully understood. Here, we demonstrate the cooperativity in the stator assembly dynamics. The binding is slow at the stalled state, but externally forced rotation as well as driving by motor torque in either direction boosts the stator binding. Hence, once a stator unit binds, it drives the rotor and triggers the avalanche of succeeding bindings. This cooperative mechanism based on nonequilibrium allostery accords with the recently-proposed gear-type coupling between the rotor and stator.


Sign in / Sign up

Export Citation Format

Share Document